Quantum-Well Semiconductor Lasers

A double-heterostructure laser consists of an active layer sandwiched between two higher-gap cladding layers. The active-layer thickness is typically in the range of 0.1–0.3 µm. In the last few years, double-heterostructure lasers with an active-layer thickness of ~ 10 nm have been fabricated. The carrier (electron or hole) motion normal to the active layer in these structures is restricted. As a result, the kinetic energy of the carriers moving in that direction is quantized into discrete energy levels similar to the well-known quantum-mechanical problem of the one-dimensional potential well, and hence these lasers are called quantum-well lasers.

[1]  D. Bour,et al.  Continuous, high‐power operation of a strained InGaAs/AlGaAs quantum well laser , 1988 .

[2]  Nick Holonyak,et al.  Temperature dependence of threshold current for coupled multiple quantum‐well In1−xGax P1−zAsz‐InP heterostructure laser diodes , 1980 .

[3]  S. Hersee,et al.  Low-threshold GRIN-SCH GaAs/GaAlAs laser structure grown by OM VPE , 1982 .

[4]  Ming C. Wu,et al.  InGaAs/GaAs/InGaP multiple‐quantum‐well lasers prepared by gas‐source molecular beam epitaxy , 1991 .

[5]  W. Dumke,et al.  The angular beam divergence in double-heterojunction lasers with very thin active regions , 1975 .

[6]  M. Fukuda,et al.  Stable operation (over 5000 h) of high-power 0.98- mu m InGaAs-GaAs strained quantum well ridge waveguide lasers for pumping Er/sup 3+/-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[7]  Yasuhiko Arakawa,et al.  Quantum noise and dynamics in quantum well and quantum wire lasers , 1984 .

[8]  S. Fischer,et al.  Ridge waveguide injection laser with a GaInAs strained‐layer quantum well (λ=1 μm) , 1987 .

[9]  Paul R. Berger,et al.  Performance characteristics of GaInAs/GaAs large optical cavity quantum well lasers , 1991 .

[10]  W. Tsang Heterostructure semiconductor lasers prepared by molecular beam epitaxy , 1984 .

[11]  A. Sugimura,et al.  Auger recombination effect on threshold current of InGaAsP quantum well lasers , 1983 .

[12]  P.J.A. Thijs,et al.  High quantum efficiency, high power, modulation doped GaInAs strained-layer quantum well laser diodes emitting at 1.5 mu m , 1989 .

[13]  K. Woodbridge,et al.  Short wavelength (visible) GaAs quantum well lasers grown by molecular beam epitaxy , 1984 .

[14]  Fabrication and performance characteristics of InGaAsP multiquantum well double channel planar buried heterostructure lasers , 1985 .

[15]  Niloy K. Dutta,et al.  Calculated threshold current of GaAs quantum well lasers , 1982 .

[16]  A. Sugimura,et al.  Threshold currents for AlGaAs quantum well lasers , 1984 .

[17]  Linewidth enhancement factor of 1.3 mu m InGaAsP/InP strained-layer multiple-quantum-well DFB lasers , 1991, IEEE Photonics Technology Letters.

[18]  S. G. Napholtz,et al.  Long wavelength InGaAsP (λ∼1.3 μm) modified multiquantum well laser , 1985 .

[19]  T. Tanbun-Ek,et al.  High temperature operation of lattice matched and strained InGaAs-InP quantum well lasers , 1991, IEEE Photonics Technology Letters.

[20]  M. Oron,et al.  Low threshold highly efficient strained quantum well lasers at 1.5 micrometre wavelength , 1990 .

[21]  N. Dutta,et al.  InGaAs/InP quantum well lasers with sub-mA threshold current , 1990 .

[22]  R. A. Abram,et al.  Auger recombination in a quantum well heterostructure , 1983 .

[23]  Stephen D. Hersee,et al.  Some characteristics of the GaAs/GaAlAs graded‐index separate‐confinement heterostructure quantum well laser structure , 1984 .

[24]  P. Dapkus,et al.  Very narrow graded‐barrier single quantum well lasers grown by metalorganic chemical vapor deposition , 1982 .

[25]  A. Cho,et al.  1.5–1.6‐μm Ga0.47In0.53As/Al0.48In0.52As multiquantum well lasers grown by molecular beam epitaxy , 1983 .

[26]  R. Dingle,et al.  Confined carrier quantum states in ultrathin semiconductor heterostructures , 1975 .

[27]  Masahiro Asada,et al.  Gain and intervalence band absorption in quantum-well lasers , 1984 .

[28]  K. Otsuka,et al.  Polarisation-dependent gain-current relationship in GaAs-AlGaAs MQW laser diodes , 1983 .

[29]  N. Olsson,et al.  Fabrication and performance characteristics of 1.55‐μm InGaAsP multiquantum well ridge guide lasers , 1985 .

[30]  H. Okumura,et al.  Determination of the conduction‐band discontinuities of GaAs/AlxGa1−xAs interfaces by capacitance‐voltage measurements , 1985 .

[31]  N. Holonyak,et al.  Phonon‐assisted recombination and stimulated emission in quantum‐well AlxGa1−xAs‐GaAs heterostructures , 1980 .

[32]  A. Yariv,et al.  Auger recombination in quantum-well InGaAsP heterostructure lasers , 1982 .

[33]  Niloy K. Dutta,et al.  Gain and carrier lifetime measurements in AlGaAs single quantum well lasers , 1983 .

[34]  Katsumi Iwatsuki,et al.  Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth , 1990 .

[35]  N. Dutta,et al.  Linewidth enhancement factor in strained quantum well lasers , 1990 .

[36]  P. Petroff,et al.  GaInAs(P)/InP quantum well structures grown by gas source molecular beam epitaxy , 1985 .

[37]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[38]  D. Scifres,et al.  Optical analysis of multiple-quantum-well lasers. , 1979, Applied optics.

[39]  R. F. Leheny,et al.  Dynamics of Photoexcited GaAs Band-Edge Absorption with Subpicosecond Resolution , 1979 .

[40]  Kam Y. Lau,et al.  Ultralow‐threshold graded‐index separate‐confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings , 1987 .

[41]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[42]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular‐beam epitaxy , 1981 .

[43]  E. Kapon,et al.  Threshold current reduction in patterned quantum well semiconductor lasers grown by molecular beam epitaxy , 1990 .

[44]  Thomas L. Paoli,et al.  Phase‐locked (GaAl)As laser emitting 1.5 W cw per mirror , 1983 .

[45]  M. G. Burt,et al.  Linewidth enhancement factor for quantum-well lasers , 1984 .

[46]  R. Dupuis,et al.  Facet-coated graded-index separate-confinement-heterostructure single-quantum-well lasers having low degradation rates (<1 percent/kh) at 70°C , 1983, IEEE Electron Device Letters.

[47]  R. Lang,et al.  1.3 μm InGaAsP/InP multiquantum-well lasers grown by vapour-phase epitaxy , 1983 .

[48]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[49]  Won-Tien Tsang,et al.  Ultra-low threshold, graded-index waveguide, separate confinement, CW buried-heterostructure lasers , 1982 .

[50]  S. Forrest,et al.  Relationship between the conduction‐band discontinuities and band‐gap differences of InGaAsP/InP heterojunctions , 1984 .

[51]  L. F. Tiemeijer,et al.  High-performance 1.5 mu m wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers , 1991 .

[52]  P. J. Caldwell,et al.  Properties of InxGa1−xAs‐GaAs strained‐layer quantum‐well‐heterostructure injection lasers , 1985 .

[53]  H. Choi,et al.  InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency , 1990 .

[54]  Yasuhiko Arakawa,et al.  Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers , 1985 .

[55]  Niloy K. Dutta,et al.  Excellent uniformity and very low (<50 A/cm2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate , 1991 .

[56]  Russell D. Dupuis,et al.  Quantum-well heterostructure lasers , 1980 .

[57]  S. Forrest,et al.  Measurement of the conduction band discontinuities of InGaAsP/InP heterojunctions using capacitance–voltage analysis , 1986 .

[58]  G. E. Stillman,et al.  LPE In1−xGaxP1−zAsz (x∼0.12, z∼0.26) DH laser with multiple thin‐layer (<500 Å) active region , 1977 .

[59]  Niloy K. Dutta,et al.  Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers , 1983 .

[60]  Ming C. Wu,et al.  Strained-layer 1.5 mu m wavelength InGaAs/InP multiple quantum well lasers grown by chemical beam epitaxy , 1990 .

[61]  W. Tsang Ga0.47In0.53As/InP multiquantum well heterostructure lasers grown by molecular beam epitaxy operating at 1.53 μm , 1984 .

[62]  A. Sugimura Phonon assisted gain coefficient in AlGaAs quantum well lasers , 1983 .

[63]  J. Singh,et al.  Theoretical studies of the effect of strain on the performance of strained quantum well lasers based on GaAs and InP technology , 1991 .

[64]  W. Tsang,et al.  A visible (AlGa)As heterostructure laser grown by molecular beam epitaxy , 1981 .

[65]  S. W. Kirchoefer,et al.  Quantum-well Inp-Inl−xGaxPl−zAsz heterostructure lasers grown by liquid phase epitaxy (LPE) , 1980 .

[66]  N. Olsson,et al.  Fabrication and performance characteristics of InGaAsP ridge-guide distributed-feedback multiquantum-well lasers , 1985 .

[67]  Ming C. Wu,et al.  A periodic index separate confinement heterostructure quantum well laser , 1991 .

[68]  M. W. Cole Electronic surface states of liquid helium , 1974 .

[69]  A. Yariv Quantum well semiconductor lasers are taking over , 1989, IEEE Circuits and Devices Magazine.

[70]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[71]  N. Dutta Current injection in multiquantum well lasers , 1983 .

[72]  T. Tanbun-ek,et al.  Strained InGaAs/InP quantum well lasers , 1990 .

[73]  W. Tsang Device characteristics of (AlGa)As multiquantum-well heterostructure lasers grown by molecular beam epitaxy , 1981 .