Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis

A multivariate change point control chart based on data depth (CPDP) is considered for detecting shifts in either the mean vector, the covariance matrix, or both of the processes for Phase I. The proposed chart is preferable from a robustness point of view, has attractive detection performance, and can be especially useful in Phase I analysis setting, where there is limited information about the underlying process. Comparison results and an illustrative example show that our CPDP chart has great potential for Phase I analysis of multivariate individual observations. The application of CPDP chart is illustrated in a real data example.

[1]  Douglas M. Hawkins,et al.  Multivariate Exponentially Weighted Moving Covariance Matrix , 2008, Technometrics.

[2]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[3]  Charles W. Champ,et al.  Assessment of Multivariate Process Control Techniques , 1997 .

[4]  William H. Woodall,et al.  A Control Chart for Preliminary Analysis of Individual Observations , 1996 .

[5]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[6]  Joan Antoni Sellarès,et al.  Efficient computation of location depth contours by methods of computational geometry , 2003, Stat. Comput..

[7]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[8]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[9]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[10]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[11]  Zhonghua Li,et al.  A multivariate control chart for simultaneously monitoring process mean and variability , 2010, Comput. Stat. Data Anal..

[12]  Yonghong Gao Data depth based on spatial rank , 2003 .

[13]  Douglas M. Hawkins,et al.  The Changepoint Model for Statistical Process Control , 2003 .

[14]  Michael Papazoglou,et al.  Multivariate statistical process control of chemical processes , 1998 .

[15]  Peihua Qiu,et al.  Distribution-free monitoring of univariate processes , 2011 .

[16]  A. Erhan Mergen,et al.  IMPROVING THE PERFORMANCE OF THE T2 CONTROL CHART , 1993 .

[17]  D. Hawkins,et al.  A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions , 2003 .

[18]  Marion R. Reynolds,et al.  Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix , 2008 .

[19]  W. Shewhart The Economic Control of Quality of Manufactured Product. , 1932 .

[20]  E. S. Page CONTROL CHARTS WITH WARNING LINES , 1955 .

[21]  Chien-Wei Wu,et al.  Monitoring Multivariate Process Variability for Individual Observations , 2007 .

[22]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[23]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[24]  C. Loader CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .

[25]  Douglas C. Montgomery,et al.  Research Issues and Ideas in Statistical Process Control , 1999 .

[26]  A. Pettitt A Non‐Parametric Approach to the Change‐Point Problem , 1979 .

[27]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[28]  William H. Woodall,et al.  Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations , 2000 .

[29]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[30]  C.-B. Lee,et al.  ESTIMATING THE NUMBER OF CHANGE POINTS , 1998 .

[31]  Fugee Tsung,et al.  A Change Point Approach for Phase I Analysis in Multistage Processes , 2008, Technometrics.

[32]  Peihua Qiu,et al.  On Nonparametric Statistical Process Control of Univariate Processes , 2011, Technometrics.

[33]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[34]  Ronald J. M. M. Does,et al.  CUSUM Charts for Preliminary Analysis of Individual Observations , 2000 .

[35]  S. Chakraborti,et al.  Nonparametric Control Charts: An Overview and Some Results , 2001 .

[36]  H. Toutenburg,et al.  Lehmann, E. L., Nonparametrics: Statistical Methods Based on Ranks, San Francisco. Holden‐Day, Inc., 1975. 480 S., $ 22.95 . , 1977 .

[37]  Peihua Qiu,et al.  Distribution-free multivariate process control based on log-linear modeling , 2008 .

[38]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[39]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[40]  Thomas P. Hettmansperger,et al.  Statistical inference based on ranks , 1985 .

[41]  M. Srivastava,et al.  Likelihood Ratio Tests for a Change in the Multivariate Normal Mean , 1986 .

[42]  Douglas M. Hawkins,et al.  Combined Charts for Mean and Variance Information , 2009 .

[43]  Peihua Qiu,et al.  A Rank-Based Multivariate CUSUM Procedure , 2001, Technometrics.

[44]  William H. Woodall,et al.  The State of Statistical Process Control as We Proceed into the 21st Century , 2000 .

[45]  Victoria S. Jordan,et al.  Distribution-Free Phase I Control Charts for Subgroup Location , 2009 .

[46]  Jean Dickinson Gibbons,et al.  Nonparametric Statistical Inference , 1972, International Encyclopedia of Statistical Science.

[47]  Mitchell J. Mergenthaler Nonparametrics: Statistical Methods Based on Ranks , 1979 .

[48]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[49]  William H. Woodall,et al.  Introduction to Statistical Quality Control, Fifth Edition , 2005 .

[50]  Zachary G. Stoumbos,et al.  Robustness to Non-Normality of the Multivariate EWMA Control Chart , 2002 .

[51]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .