Maximum Likelihood Estimation of diffusion and convection in tokamaks using infinite domains

A new method to identify the spatial dependent parameters describing the heat transport, i.e. diffusion and convection, in fusion reactors is presented. These parameters determine the performance of fusion reactors. The method is based on local transfer functions, which are defined between two measurement locations. Estimation of the local transfer functions results in a model of the spatial dependent diffusion and convection. The parameters of the local transfer functions are estimated using Maximum Likelihood Estimation in the frequency domain. This is necessary, because both measurements (input and output of the transfer function) contain noise. Moreover, confidence bounds and validation tests can be used in this framework. Finally, experimental results are presented, which show that the diffusion and convection can be estimated. In this case, the uncertainty bounds are too large on the convection to conclude its presence.

[1]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[2]  P. Mantica,et al.  Perturbative studies of transport phenomena in fusion devices , 2010 .

[3]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[4]  G. Giruzzi,et al.  Exact solutions of the diffusion-convection equation in cylindrical geometry , 2005 .

[5]  J. Freidberg,et al.  Plasma Physics and Fusion Energy , 2007 .

[6]  Yves Rolain,et al.  Uncertainty of transfer function modelling using prior estimated noise models , 2003, Autom..

[7]  R Balesc,et al.  Aspects of anomalous transport in plasmas , 2005 .

[8]  J. Degrassie Tokamak rotation sources, transport and sinks , 2009 .

[9]  R. Cano,et al.  Electron cyclotron emission and absorption in fusion plasmas , 1983 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Emmanuel Witrant,et al.  Shape identification for distributed parameter systems and temperature profiles in tokamaks , 2011, IEEE Conference on Decision and Control and European Control Conference.

[12]  M. Hirsch,et al.  Heterodyne methods in millimetre wave plasma diagnostics with applications to ECE, interferometry and reflectometry , 1997 .

[13]  E. Fable,et al.  Particle transport in tokamak plasmas, theory and experiment , 2009 .

[14]  R. Gallager Circularly-Symmetric Gaussian random vectors , 2008 .

[15]  Alexey Zabolotskiy,et al.  Particle transport in tokamak plasmas , 2005 .

[16]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[17]  Yves Rolain,et al.  Uncertainty of Transfer Function Modeling Using Prior Estimated Noise Models , 2003 .

[18]  P. Mantica,et al.  Determination of diffusive and nondiffusive transport in modulation experiments in plasmas , 1991 .

[19]  N. L. Cardozo,et al.  Perturbative transport studies in fusion plasmas , 1995 .

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  J. Citrin,et al.  Impact of heating and current drive mix on the ITER hybrid scenario , 2010 .

[22]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[23]  Philip E. Gill,et al.  Practical optimization , 1981 .

[24]  A. Bejan,et al.  Heat transfer handbook , 2003 .