Statistical Model Checking, Refinement Checking, Optimization, ... for Stochastic Hybrid Systems

Statistical Model Checking (SMC) [19,16,21,23,15] is an approach that has recently been proposed as new validation technique for large-scale, complex systems. The core idea of SMC is to conduct some simulations of the system, monitor them, and then use statistical methods (including sequential hypothesis testing or Monte Carlo simulation) in order to decide with some degree of confidence whether the system satisfies the property or not. By nature, SMC is a compromise between testing and classical formal method techniques. Simulation-based methods are known to be far less memory and time intensive than exhaustive ones, and are some times the only option.

[1]  Kim G. Larsen,et al.  Schedulability of Herschel-Planck Revisited Using Statistical Model Checking , 2012, ISoLA.

[2]  Kim G. Larsen,et al.  Statistical Model Checking for Networks of Priced Timed Automata , 2011, FORMATS.

[3]  Kim G. Larsen,et al.  Distributed Parametric and Statistical Model Checking , 2011, PDMC.

[4]  Kim G. Larsen,et al.  Rewrite-Based Statistical Model Checking of WMTL , 2012, RV.

[5]  Joost-Pieter Katoen,et al.  The Ins and Outs of the Probabilistic Model Checker MRMC , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[6]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[7]  Kim G. Larsen,et al.  Runtime Verification of Biological Systems , 2012, ISoLA.

[8]  Frédéric Magniez,et al.  Probabilistic abstraction for model checking: An approach based on property testing , 2007, TOCL.

[9]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[10]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[11]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[12]  Kim G. Larsen,et al.  Lower-Bound Constrained Runs in Weighted Timed Automata , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[13]  Kim G. Larsen,et al.  An evaluation framework for energy aware buildings using statistical model checking , 2012, Science China Information Sciences.

[14]  Kim G. Larsen,et al.  Optimal Conditional Reachability for Multi-priced Timed Automata , 2005, FoSSaCS.

[15]  Kim G. Larsen,et al.  Optimal scheduling using priced timed automata , 2005, PERV.

[16]  Kim G. Larsen,et al.  Complexity in Simplicity: Flexible Agent-Based State Space Exploration , 2007, TACAS.

[17]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[18]  José Villén-Altamirano,et al.  RESTART: a straightforward method for fast simulation of rare events , 1994, Proceedings of Winter Simulation Conference.

[19]  Kim G. Larsen,et al.  Infinite Runs in Weighted Timed Automata with Energy Constraints , 2008, FORMATS.

[20]  Kim G. Larsen,et al.  Timed automata with observers under energy constraints , 2010, HSCC '10.

[21]  George J. Pappas,et al.  Optimal Paths in Weighted Timed Automata , 2001, HSCC.

[22]  Kim G. Larsen,et al.  Minimum-Cost Reachability for Priced Timed Automata , 2001, HSCC.

[23]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[24]  Kim G. Larsen,et al.  Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic , 2012, LPAR.

[25]  Kim G. Larsen,et al.  Time for Statistical Model Checking of Real-Time Systems , 2011, CAV.

[26]  Jirí Srba,et al.  Comparing the Expressiveness of Timed Automata and Timed Extensions of Petri Nets , 2008, FORMATS.

[27]  Kim G. Larsen,et al.  As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced Timed Automata , 2001, CAV.

[28]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.