Claus catalysis and H2S selective oxidation

Abstract This review article deals with the development of sulfur recovery from the Claus process to H2S selective oxidation. Governments are constantly tightening regulations to limit the emission of sulfur compounds into the air. This makes it necessary to constantly enhance the level of sulfur recovery from natural, refinery, or coal gasification geses, and many improvements in the Claus process have been introduced to this end. In this review, emphasis has been put on the mechanism of reactions occurring in most of the sulfur recovery units, reactions between H2S and SO2 or O2 and side reactions such as hydrolysis of COS and CS2 or sulfation of the catalyst.

[1]  James R. Katzer,et al.  Infrared Spectroscopic Investigation of the Adsorption and Reactions of SO2 on CuO , 1977 .

[2]  J. Smith,et al.  Oxidation of hydrogen sulfide to elementary sulfur on an activated carbon bed in the presence of iron (III) chloride aerosol , 1980 .

[3]  K. Khulbe,et al.  ESR studies of SO2 and H2S adsorption on alumina and alumina-supported Mo and MoCo , 1978 .

[4]  J. Klein,et al.  Catalytic oxidation of hydrogen sulphide on activated carbons , 1984 .

[5]  Rodney N. Hader,et al.  SULFUR FROM SOUR GASES , 1950 .

[6]  S. Andersson,et al.  SOx adsorption/desorption processes on γ-alumina for SOx transfer catalyst , 1985 .

[7]  M. Laniecki,et al.  Effect of water on the formation of bisulfite ions upon sulfur dioxide adsorption onto faujasite-type zeolites , 1987 .

[8]  M. Bensitel,et al.  Effect of Na+ on sulphation and related reactions over a commercial claus alumina catalyst , 1988 .

[9]  D. Griffiths,et al.  Infra-red study of the interaction of hydrogen sulphide and water with a magnesium oxide surface , 1975 .

[10]  T. Jin,et al.  Structure of acid sites on sulfur-promoted iron oxide , 1986 .

[11]  M. Ziolek,et al.  UV-visible spectroscopic investigations of the modified claus reaction on NaX zeolite catalysts , 1988 .

[12]  P. Mars,et al.  The role of sulfur trapped in micropores in the catalytic partial oxidation of hydrogen sulfide with oxygen , 1974 .

[13]  P. Walker,et al.  Oxidation of hydrogen sulfide over microporous carbons , 1975 .

[14]  J. Rasko,et al.  Hydrogen sulfide adsorption on faujasite-type zeolites with systematically varied Si-Al ratios , 1978 .

[15]  J. Lavalley,et al.  SO2 adsorption on hydroxylated alumina , 1982 .

[16]  C. Tripp,et al.  The structure and stability of sulfated alumina and titania , 1986 .

[17]  H. Karge,et al.  Claus Reaction. Influence of Electron-Donor and Related Properties of Activated Alumina Catalyst , 1981 .

[18]  C. Lenoir,et al.  Bull. Soc. Chim. France , 1915 .

[19]  Z. M. George Kinetics of cobalt-molybdate-catalyzed reactions of SO2 with H2S and COS and the hydrolysis of COS*1 , 1974 .

[20]  O. Saur,et al.  Acidic properties and stability of sulfate-promoted metal oxides , 1992 .

[21]  J. Travert,et al.  Infrared study of coadsorption of H2S and CO2 on γ-alumina , 1979 .

[22]  E. Paukshtis,et al.  Acid-base properties of modified aluminas , 1982 .

[23]  Y. Okamoto,et al.  Hydrogen sulfide adsorption on alumina, modified alumina, and molybdenum trioxide/alumina , 1986 .

[24]  H. A. El Masry,et al.  The Claus reaction: Effect of forced feed composition cycling , 1985 .

[25]  Ji Hanting,et al.  The Taser Induced Fluorescence Spectra And Decay Lifetime Of NI2+ Doped Chrysoberyl , 1985, Other Conferences.

[26]  M. Ziolek,et al.  The specific catalytic activity of sodium faujasites in H2S oxidation , 1978 .

[27]  Charles C. Chang Infrared studies of SO2 on γ-alumina , 1978 .

[28]  J. Ray,et al.  New concepts for a new generation Claus alumina , 1996 .

[29]  I. Lana,et al.  Infrared studies of the adsorption and surface reactions of hydrogen sulfide and sulfur dioxide on some aluminas and zeolites , 1971 .

[30]  I. Lana,et al.  A study of the kinetics and mechanism of COS hydrolysis over alumina , 1984 .

[31]  V. Ivanov,et al.  Effect of sodium oxide on the morphology and basicity of alumina , 1995 .

[32]  M. Low,et al.  Reactions of gaseous pollutants with solids. II. Infrared study of sorption of sulfur dioxide on magnesium oxide , 1971 .

[33]  Robert A. Schoonheydt,et al.  Infrared spectroscopic investigation of the adsorption and reactions of SO2 on MgO , 1972 .

[34]  J. Zotin,et al.  Effect of basicity and pore size distribution of transition aluminas on their performance in the hydrogen sulphide-sulphur dioxide reaction , 1991 .

[35]  Patricio Reyes,et al.  React. Kinet. Catal. Lett. , 1974 .

[36]  J. Geus,et al.  Selective oxidation of hydrogen sulfide to elemental sulfur using iron oxide catalysts on various supports , 1993 .

[37]  S. Suárez,et al.  Studies on the Modified Claus Reaction Over Alkaline Faujasites by Simultaneous Infrared, Kinetics, and esr Measurements , 1984 .

[38]  G. Gavalas,et al.  Adsorption and oxidative adsorption of sulfur dioxide on γ-alumina , 1989 .

[39]  A. Datta,et al.  Claus catalysis. 2. An FTIR study of the adsorption of hydrogen sulfide on the alumina catalyst , 1985 .

[40]  C. Liu The oxidizing properties of $gamma;-alumina: Infrared studies of the adsorption of H2S and CS2 , 1972 .

[41]  M. Ziolek,et al.  Catalytically active centres in H2S + O2 reaction on faujasites , 1981 .

[42]  O. Saur,et al.  Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst , 1991 .

[43]  Z. M. George Poisoning and regeneration of claus alumina catalysts , 1978 .

[44]  O. Saur,et al.  Etude par spectroscopie infrarouge de l'adsorption de produits sulfures sur anatase;sites d'adsorption , 1984 .

[45]  M. Benaglia,et al.  Gazz. Chim. Ital , 1995 .

[46]  D. D. Beck,et al.  Catalytic reduction of carbon monoxide with hydrogen sulfide. 2. Adsorption of water and hydrogen sulfide on anatase and rutile , 1986 .

[47]  P. G. Menon,et al.  Oxidation of H2S on active carbon catalyst , 1975 .

[48]  P. Hoggan,et al.  Combined FTIR, reactivity and quantum chemistry investigation of COS hydrolysis at metal oxide surfaces used to compare hydroxyl group basicity , 1996 .

[49]  Hellmut G. Karge,et al.  IR studies of sulfur dioxide adsorption on a Claus catalyst by selective poisoning of sites , 1984 .

[50]  Z. M. George,et al.  Electron donor properties of Claus catalysts: I. Influence of NaOH on the catalytic activity of silica gel , 1980 .

[51]  J. Travert,et al.  Comparative adsorption of H2S, CH3SH and (CH3)2S on alumina. Structure of species and adsorption sites , 1981 .

[52]  P.F.M.T. van Nisselrooya,et al.  Superclaus reduces SO2, emission by the use of a new selective oxidation catalyst , 1993 .

[53]  R. Mcfarlane,et al.  An infrared study of sulfated silica , 1987 .

[54]  A. Datta,et al.  Claus catalysis. 1. Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy , 1985 .

[55]  P. Berben,et al.  Deactivation of Claus Tail-Gas Treating Catalysts , 1987 .

[56]  M. Ziolek Catalytically active centres of faujasite-type zeolites in H2S+SO2 reaction , 1984 .

[57]  J. Ray,et al.  A new Claus catalyst to reduce atmospheric pollution , 1996 .

[58]  I. Lana,et al.  Role of reduction sites in vapor-phase hydrolysis of carbonyl sulfide over alumina catalysts , 1980 .

[59]  Z. M. George Effect of catalyst basicity for COS-SO2 and COS hydrolysis reactions☆ , 1974 .

[60]  T. Ghosh,et al.  Kinetics and reaction mechanism of hydrogen sulfide oxidation over activated carbon in the temperature range of 125–200°c , 1986 .

[61]  F. Luck,et al.  Activity of different metal oxides towards COS hydrolysis. Effect of SO2 and sulfation , 1993 .

[62]  C. Quft,et al.  Poisoning of Claus Catalyes Sy Sulphation , 1980 .

[63]  J. Smith,et al.  Oxidation of low concentrations of hydrogen sulfide by air on a fixed activated carbon bed , 1983 .

[64]  J. Lavalley,et al.  Comparative study of alumina sulfation from H2S and SO2 oxidation , 1983 .

[65]  C. Tripp,et al.  Comment on the adsorption of hydrogen sulfide on alumina , 1986 .

[66]  A. Dalai,et al.  The effects of pressure and temperature on the catalytic oxidation of hydrogen sulfide in natural gas and regeneration of the catalyst to recover the sulfur produced , 1993 .

[67]  E. Tollefson,et al.  Oxidation of low concentrations of hydrogen sulfide over activated carbon , 1980 .

[68]  M. Pijolat,et al.  A Kinetic Model for Alumina Sulfation , 1996 .

[69]  J. Zotin,et al.  Influence of the basicity of alumina catalysts on their activity in the H2S+SO2 reaction , 1989 .

[70]  P. Hoggan,et al.  Mechanism of COS Hydrolysis on Alumina , 1994 .

[71]  M. Bensitel,et al.  The structure of sulfate species on magnesium oxide , 1989 .

[72]  C. Amberg,et al.  Infrared Investigation of H2S Adsorption and Decomposition on Alumina and on Alumina Supported Molybdenum Sulfide , 1972 .

[73]  J. Peri Infrared and Gravimetric Study of the Surface Hydration of γ-Alumina , 1965 .

[74]  P. Mars,et al.  Catalytic Oxidation of Hydrogen Sulfide. Influence of Pore Structure and Chemical Composition of Various Porous Substances , 1977 .

[75]  M. Ziolek,et al.  U.v./vis and i.r. spectroscopic study of hydrogen sulphide adsorption on faujasite-type zeolites , 1987 .

[76]  V. Solinas,et al.  Temperature-programmed desorption of H2S from alkali-metal zeolites , 1992 .

[77]  M. Machida,et al.  Infrared study of sulfur-containing iron oxide. Behavior of sulfur during reduction and oxidation , 1984 .

[78]  Y. Matsumoto,et al.  Photocatalytic oxidation of sulfur on titanium dioxide , 1982 .