The role of spin in thermoelectricity

[1]  T. Kikkawa,et al.  Spin Seebeck Effect: Sensitive Probe for Elementary Excitation, Spin Correlation, Transport, Magnetic Order, and Domains in Solids , 2022, Annual Review of Condensed Matter Physics.

[2]  Yanshuai Li,et al.  Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials , 2022, Frontiers in Chemistry.

[3]  A. Bansil,et al.  Evidence for spin swapping in an antiferromagnet , 2022, Nature Physics.

[4]  W. Han,et al.  Spin Seebeck effect in quantum magnet Pb2V3O9 , 2022, Applied Physics Letters.

[5]  R. Arita,et al.  Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet , 2022, Science advances.

[6]  Sarah J. Watzman,et al.  Transverse thermal energy conversion using spin and topological structures , 2021, Journal of Applied Physics.

[7]  D. Vashaee,et al.  Understanding and design of spin-driven thermoelectrics , 2021, Cell Reports Physical Science.

[8]  D. Vashaee,et al.  Spin fluctuations yield zT enhancement in ferromagnets , 2021, iScience.

[9]  Sarah J. Watzman,et al.  Giant anomalous Nernst signal in the antiferromagnet YbMnBi2 , 2021, Nature Materials.

[10]  Y. Shiomi,et al.  Triplon current generation in solids , 2021, Nature Communications.

[11]  K. Tsunekawa,et al.  Observation of nuclear-spin Seebeck effect , 2021, Nature Communications.

[12]  Jun Jiang,et al.  Anomalous Thermopower and High ZT in GeMnTe2 Driven by Spin's Thermodynamic Entropy , 2021, Research.

[13]  Joonki Suh,et al.  A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion , 2021, Nature Communications.

[14]  K. Uchida Transport phenomena in spin caloritronics , 2021, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[15]  H. Sepehri-Amin,et al.  Strain-induced cooling-heating switching of anisotropic magneto-Peltier effect , 2021 .

[16]  Ho Won Jang,et al.  Enhanced Spin Seebeck Thermopower in Pt/Holey MoS2/Y3Fe5O12 Hybrid Structure. , 2020, Nano letters.

[17]  Quynh T. Nguyen,et al.  Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal , 2020, Nature Communications.

[18]  J. Heremans,et al.  Combining Spin-Seebeck and Nernst Effects in Aligned MnBi/Bi Composites , 2020, Nanomaterials.

[19]  Qiang Sun,et al.  Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives , 2020 .

[20]  C. Felser,et al.  Magnon-induced Giant Anomalous Nernst Effect in Single Crystal MnBi , 2020, 2009.02211.

[21]  Zhenxiang Cheng,et al.  Spin-gapless semiconductors for future spintronics and electronics , 2020 .

[22]  Marco Fronzi,et al.  A review of recent progress in thermoelectric materials through computational methods , 2020, Materials for Renewable and Sustainable Energy.

[23]  David J. Singh,et al.  Defect-mediated Rashba engineering for optimizing electrical transport in thermoelectric BiTeI , 2020, npj Computational Materials.

[24]  Yong Soo Kim,et al.  Enhanced Spin Seebeck Effect in Monolayer Tungsten Diselenide Due to Strong Spin Current Injection at Interface , 2020, Advanced Functional Materials.

[25]  Hong Kuan Ng,et al.  Large enhancement of thermoelectric performance in MoS2/h-BN heterostructure due to vacancy-induced band hybridization , 2020, Proceedings of the National Academy of Sciences.

[26]  R. Arita,et al.  Iron-based binary ferromagnets for transverse thermoelectric conversion , 2020, Nature.

[27]  Sarah J. Watzman,et al.  Largely Suppressed Magneto-Thermal Conductivity and Enhanced Magneto-Thermoelectric Properties in PtSn4 , 2020, Research.

[28]  K. Uchida,et al.  Magneto-optical painting of heat current , 2020, Nature Communications.

[29]  T. Ohkubo,et al.  Electric-field-induced on–off switching of anomalous Ettingshausen effect in ultrathin Co films , 2019, Applied Physics Express.

[30]  J. Heremans,et al.  Magnon drag effect in Fe-Co alloys , 2019, Journal of Applied Physics.

[31]  D. Vashaee,et al.  Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe , 2019, Science Advances.

[32]  P. Sun,et al.  Large transverse thermoelectric figure of merit in a topological Dirac semimetal , 2019, Science China Physics, Mechanics & Astronomy.

[33]  Zhengfei Wang,et al.  Magnetic Field‐Enhanced Thermoelectric Performance in Dirac Semimetal Cd3As2 Crystals with Different Carrier Concentrations , 2019, Advanced Functional Materials.

[34]  Claudia Felser,et al.  Zero‐Field Nernst Effect in a Ferromagnetic Kagome‐Lattice Weyl‐Semimetal Co3Sn2S2 , 2019, Advanced materials.

[35]  D. Graf,et al.  Enhanced thermoelectric performance of heavy-fermion compounds YbTM2Zn20 (TM = Co, Rh, Ir) at low temperatures , 2019, Science Advances.

[36]  A. Serga,et al.  Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets , 2019, Nature Communications.

[37]  J. Hayakawa,et al.  Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet , 2019, Science Advances.

[38]  T. Kikkawa,et al.  Fabrication of yttrium–iron–garnet/Pt multilayers for the longitudinal spin Seebeck effect , 2018, Applied Physics Letters.

[39]  Y. Feng,et al.  One-dimensional thermoelectrics induced by Rashba spin-orbit coupling in two-dimensional BiSb monolayer , 2018, Nano Energy.

[40]  A. Thomas,et al.  Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa , 2018, Applied Physics Letters.

[41]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[42]  E. Saitoh,et al.  Observation of anisotropic magneto-Peltier effect in nickel , 2018, Nature.

[43]  T. Kikkawa,et al.  The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film , 2018 .

[44]  Zhiwei Chen,et al.  Manipulation of Phonon Transport in Thermoelectrics , 2018, Advanced materials.

[45]  X. H. Chen,et al.  Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd3As2 crystal. , 2018, Science bulletin.

[46]  Y. Tokura,et al.  Large magneto-thermopower in MnGe with topological spin texture , 2018, Nature Communications.

[47]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[48]  Xianli Su,et al.  Superparamagnetic enhancement of thermoelectric performance , 2017, Nature.

[49]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[50]  A. Thomas,et al.  Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes , 2017, Nature Communications.

[51]  N. Ogawa,et al.  Bulk Rashba Semiconductors and Related Quantum Phenomena , 2017, Advanced materials.

[52]  Liang Fu,et al.  Large, nonsaturating thermopower in a quantizing magnetic field , 2017, Science Advances.

[53]  G. J. Snyder,et al.  Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence , 2017, Advanced materials.

[54]  Sarah J. Watzman,et al.  Thermal spin transport and energy conversion , 2017 .

[55]  D. Cox,et al.  Magnetic scanning gate microscopy of CoFeB lateral spin valve , 2017 .

[56]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[57]  S. Maekawa,et al.  Observation of spin current in quantum spin liquid , 2016, 1609.06410.

[58]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[59]  S. Wimmer,et al.  Observation of the spin Nernst effect. , 2016, Nature materials.

[60]  Sarah J. Watzman,et al.  Research Update: Utilizing magnetization dynamics in solid-state thermal energy conversion , 2016 .

[61]  Ken-ichi Uchida,et al.  Thermal imaging of spin Peltier effect , 2016, Nature Communications.

[62]  J. Heremans,et al.  Observation of spin Seebeck contribution to the transverse thermopower in Ni-Pt and MnBi-Au bulk nanocomposites , 2016, Nature Communications.

[63]  Jing Shi,et al.  Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states , 2016, Nature Communications.

[64]  E. Saitoh,et al.  Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films , 2016, Scientific Reports.

[65]  Lihua Wu,et al.  Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Sung-chul Shin,et al.  Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers , 2015, Scientific Reports.

[67]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[68]  G. Tang,et al.  Large increase in the spin entropy of thermoelectric Ca3Co4O9+δ induced by Ni and Ce co-doping , 2015, Journal of Materials Science.

[69]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[70]  V. Prida,et al.  Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires , 2013 .

[71]  Q. Gibson,et al.  Evidence for massive bulk Dirac fermions in Pb1−xSnxSe from Nernst and thermopower experiments , 2013, Nature Communications.

[72]  Y. Takahashi Spin Fluctuation Theory of Itinerant Electron Magnetism , 2013 .

[73]  F. Xu,et al.  Improving the spin entropy by suppressing Co4+ concentration in thermoelectric Ca3Co4O9+δ , 2013 .

[74]  E. Saitoh,et al.  Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films , 2012, 1212.3142.

[75]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[76]  Lei Yang,et al.  Nanostructured thermoelectric materials: current research and future challenge , 2012 .

[77]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[78]  Yasunobu Nakamura,et al.  Spin-current-driven thermoelectric coating. , 2012, Nature materials.

[79]  Lauryn L. Baranowski,et al.  Advances in Thermal Conductivity , 2012 .

[80]  E. Johnston-Halperin,et al.  Giant spin Seebeck effect in a non-magnetic material , 2012, Nature.

[81]  B. V. van Wees,et al.  Direct observation of the spin-dependent Peltier effect. , 2012, Nature nanotechnology.

[82]  B. Hillebrands,et al.  Long-range spin Seebeck effect and acoustic spin pumping. , 2011, Nature materials.

[83]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[84]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[85]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[86]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[87]  A. Thomas,et al.  Seebeck effect in magnetic tunnel junctions. , 2011, Nature materials.

[88]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[89]  S. Maekawa,et al.  Observation of longitudinal spin-Seebeck effect in magnetic insulators , 2010 .

[90]  S. Maekawa,et al.  Spin Seebeck insulator. , 2010, Nature materials.

[91]  Youwei Du,et al.  Lu-induced spin entropy enhancement in Ca3Co4O9+δ system , 2010 .

[92]  D. Awschalom,et al.  Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. , 2010, Nature materials.

[93]  B. Wees,et al.  Thermally driven spin injection from a ferromagnet into a non-magnetic metal , 2010, 1004.1566.

[94]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[95]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[96]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[97]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[98]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[99]  G. Madsen,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[100]  S. Narazu,et al.  Roles of spin fluctuations and rattling in magnetic and thermoelectric properties of AT4Sb12 (A=Ca, Sr, Ba, La; T=Fe, Ru, Os) , 2006 .

[101]  R. Cava,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[102]  D. Rowe,et al.  Electrical and thermal transport properties of intermediate-valence YbAl3 , 2002 .

[103]  A. Markosyan,et al.  Physical properties of RCo2 Laves phases , 2001 .

[104]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[105]  U. Birkholz,et al.  Infinite stage Ettingshausen cooling in Bi‐Sb alloys , 1994 .

[106]  L. Taillefer,et al.  Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals , 1985 .

[107]  R. Gambino,et al.  Anomalously large thermoelectric cooling figure of merit in the Kondo systems CePd3 and Celn3 , 1973 .

[108]  Xianli Su,et al.  Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. , 2017, Nature nanotechnology.