String Covers of a Tree

[1]  Costas S. Iliopoulos,et al.  Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..

[2]  Wojciech Rytter,et al.  Tight Bound for the Number of Distinct Palindromes in a Tree , 2015, SPIRE.

[3]  Mohammad Sohel Rahman,et al.  Computing covers using prefix tables , 2014, Discret. Appl. Math..

[4]  William F. Smyth,et al.  An Optimal Algorithm to Compute all the Covers of a String , 1994, Inf. Process. Lett..

[5]  Wojciech Rytter,et al.  Covering problems for partial words and for indeterminate strings , 2017, Theor. Comput. Sci..

[6]  Solon P. Pissis,et al.  Indexing Weighted Sequences: Neat and Efficient , 2020, Inf. Comput..

[7]  Alexandru Popa,et al.  An output-sensitive algorithm for the minimization of 2-dimensional String Covers , 2018, TAMC.

[8]  Wojciech Rytter,et al.  Efficient counting of square substrings in a tree , 2014, Theor. Comput. Sci..

[9]  Tomasz Kociumaka,et al.  Subquadratic-Time Algorithms for Abelian Stringology Problems , 2017 .

[10]  Dany Breslauer,et al.  An On-Line String Superprimitivity Test , 1992, Inf. Process. Lett..

[11]  Ryo Yoshinaka,et al.  Computing Covers under Substring Consistent Equivalence Relations , 2020, SPIRE.

[12]  Michael A. Bender,et al.  The Level Ancestor Problem Simplified , 2002, LATIN.

[13]  Jakub Radoszewski,et al.  Subquadratic-Time Algorithms for Abelian Stringology Problems , 2015, MACIS.

[14]  Srecko Brlek,et al.  Palindromic Complexity of Trees , 2015, DLT.

[15]  Wojciech Rytter,et al.  The Maximum Number of Squares in a Tree , 2012, CPM.

[16]  Wojciech Rytter,et al.  String Powers in Trees , 2016, Algorithmica.