Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene

Mo2C, the newly synthesized MXene with a large lateral size and superconductivity property, has attracted increasing interest in material science. Employing first-principles density functional calculations, its intrinsic structural, electrical, thermal, and mechanical properties are investigated in this work. It is found that this MXene is nonmagnetic with a small molar volume. The electrical conductivity is predicted in the order of 106 Ω–1m–1, and its value is significantly influenced by doping. For thermal conductivity, both of the electron and phonon contributions are studied. At room temperature, the Mo2C’s thermal conductivity is determined to be 48.4 Wm–1 K–1, which can be further enhanced by increasing temperature and introducing n-type dopants. The specific heat and thermal expansion coefficient are also assessed, and their values at room temperature are calculated as 290 Jkg–1 K–1 and 2.26 × 10–6 K–1, respectively. Moreover, the thermal contraction of the MXene is found at low temperatures. Unde...

[1]  F. C. Nix,et al.  The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron , 1941 .

[2]  F. C. Nix,et al.  The Thermal Expansion of Pure Metals. II: Molybdenum, Palladium, Silver, Tantalum, Tungsten, Platinum, and Lead , 1942 .

[3]  P. Klemens,et al.  Thermal conductivity of graphite in the basal plane , 1994 .

[4]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[5]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[6]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[7]  Paul G. Klemens,et al.  Theory of Thermal Conduction in Thin Ceramic Films , 2001 .

[8]  J. Carbotte,et al.  Transport properties in the d-density wave state: Wiedemann-Franz law , 2002, cond-mat/0202514.

[9]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[10]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[11]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[12]  U. Waghmare,et al.  Size dependence of thermal properties of armchair carbon nanotubes: a first-principles study , 2007 .

[13]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[14]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[15]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[16]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[17]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[18]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[19]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[20]  Tianshu Li,et al.  Ideal strength and phonon instability in single-layer MoS 2 , 2012 .

[21]  Yury Gogotsi,et al.  First principles study of two-dimensional early transition metal carbides , 2012 .

[22]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[23]  Yu-Jun Zhao,et al.  First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) all-2D semiconductor/metal contacts , 2013 .

[24]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[25]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[26]  U. Häussermann,et al.  Transport properties of the II–V semiconductor ZnSb , 2013 .

[27]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[28]  Mohammad Khazaei,et al.  Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. , 2014, Physical chemistry chemical physics : PCCP.

[29]  Xian-Hu Zha,et al.  Point defect weakened thermal contraction in monolayer graphene. , 2014, The Journal of chemical physics.

[30]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[31]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[32]  Xian-Hu Zha,et al.  Remarkable Thermal Contraction in Small Size Single-Walled Boron Nanotubes , 2014 .

[33]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[34]  Ruiqin Q. Zhang,et al.  Tuning thermal expansions of zinc oxide sheets by varying the layer thickness , 2014 .

[35]  S J L Billinge,et al.  Synthesis and characterization of two-dimensional Nb4C3 (MXene). , 2014, Chemical communications.

[36]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[37]  Zhen Zhou,et al.  Recent advances in MXene: Preparation, properties, and applications , 2015 .

[38]  Michel W. Barsoum,et al.  Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C , 2015 .

[39]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[40]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[41]  Jian He,et al.  Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes , 2015 .

[42]  Jian He,et al.  The thermal and electrical properties of the promising semiconductor MXene Hf2CO2 , 2015, Scientific Reports.

[43]  Kan Luo,et al.  Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. , 2016, Nanoscale.

[44]  F. Peeters,et al.  Mo2C as a high capacity anode material: a first-principles study , 2016 .

[45]  Yury Gogotsi,et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). , 2016, Nanoscale.

[46]  S. Du,et al.  A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. , 2016, Angewandte Chemie.

[47]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[48]  Zhongwei Zhang,et al.  A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons , 2016, Scientific Reports.

[49]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .