LOCAL SINGULARITY RECONSTRUCTION FROM INTEGRALS OVER CURVES IN R-3

We define a general curvilinear Radon transform in R-3, and we develop its microlocal properties. We prove that singularities can be added (or masked) in any backprojection reconstruction method fo ...

[1]  Sigurdur Helgason,et al.  The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds , 1965 .

[2]  Complexes of straight lines in the space Cn , 1968 .

[3]  L. Hörmander Fourier integral operators. I , 1995 .

[4]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[5]  V. G. Romanov,et al.  Integral Geometry and Inverse Problems for Hyperbolic Equations , 1974 .

[6]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[7]  I. Gel'fand,et al.  A local problem of integral geometry in a space of curves , 1979 .

[8]  Eric Todd Quinto,et al.  The dependence of the generalized Radon transform on defining measures , 1980 .

[9]  A. Cormack,et al.  The Radon transform on a family of curves in the plane. II , 1981 .

[10]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[11]  Gunther Uhlmann,et al.  Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms , 1990 .

[12]  Gunther Uhlmann,et al.  Microlocal techniques in integral geometry , 1990 .

[13]  Jan Boman Helgason's support theorem for Radon transforms — A new proof and a generalization , 1991 .

[14]  Erik L. Ritman,et al.  Local tomography , 1992 .

[15]  Á. Kurusa The Invertibility of the Radon Transform on Abstract Rotational Manifolds of Real Type. , 1992 .

[16]  Peter Maass,et al.  Contour reconstruction in 3-D X-ray CT , 1993, IEEE Trans. Medical Imaging.

[17]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[18]  ALEXANDER KATSEVICH Cone Beam Local Tomography , 1999, SIAM J. Appl. Math..

[19]  Dmitrii Aleksandrovich Popov,et al.  The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions , 2001 .

[20]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[21]  David V. Finch,et al.  Microlocal Analysis of the X-Ray Transform with Sources on a Curve , 2003 .

[22]  Raluca Felea Composition of Fourier Integral Operators with Fold and Blowdown Singularities , 2005 .

[23]  Plamen Stefanov,et al.  Integral Geometry of Tensor Fields on a Class of Non-Simple Riemannian Manifolds , 2006 .

[24]  Mark H Ellisman,et al.  Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. , 2006, Journal of structural biology.

[25]  A. Katsevich Improved cone beam local tomography , 2006 .

[26]  G. Uhlmann,et al.  The boundary rigidity problem in the presence of a magnetic field , 2006, math/0611788.

[27]  Stephen,et al.  Estimates for generalized Radon transforms inthree and four dimensionsAllan , 2007 .

[28]  Xiaochuan Pan,et al.  Local cone-beam tomography image reconstruction on chords. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Andrew Béla Frigyik,et al.  The X-Ray Transform for a Generic Family of Curves and Weights , 2007, math/0702065.

[30]  Duccio Fanelli,et al.  Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem , 2008 .

[31]  E. T. Quinto,et al.  Local Tomography in Electron Microscopy , 2008, SIAM J. Appl. Math..

[32]  A. Lawrence,et al.  Tomography of Large Format Electron Microscope Tilt Series: Image Alignment and Volume Reconstruction , 2008, 2008 Congress on Image and Signal Processing.

[33]  Sean F. Holman,et al.  The weighted doppler transform , 2009, 0905.2375.

[34]  Maarten V. de Hoop,et al.  Seismic imaging with the generalized Radon transform: a curvelet transform perspective , 2009 .

[35]  Albert F. Lawrence,et al.  Non-linear Bundle Adjustment for Electron Tomography , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[36]  E. T. Quinto,et al.  MICROLOCAL ASPECTS OF BISTATIC SYNTHETIC APERTURE RADAR IMAGING , 2010, 1008.0687.

[37]  Eric Todd Quinto,et al.  The Microlocal Properties of the Local 3-D SPECT Operator , 2011, SIAM J. Math. Anal..

[38]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.