An Improved Version of Volume Dominance for Multi-Objective Optimisation
暂无分享,去创建一个
[1] Dario Landa Silva,et al. Obtaining Better Non-Dominated Sets Using Volume Dominance , 2007, 2007 IEEE Congress on Evolutionary Computation.
[2] ZitzlerE.,et al. Multiobjective evolutionary algorithms , 1999 .
[3] Kiyoshi Tanaka,et al. Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.
[4] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[5] Riccardo Poli,et al. Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.
[6] Pallab Dasgupta,et al. Multiobjective heuristic search - an introduction to intelligent search methods for multicriteria optimization , 1999, Computational intelligence.
[7] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[8] Mario Köppen,et al. Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-objective Optimization , 2005, EMO.
[9] Shapour Azarm,et al. Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .
[10] Vilfredo Pareto,et al. Cours d'économie politique : professé à l'Université de Lausanne , 1896 .
[11] Huidong Jin,et al. Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[12] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[13] Christine L. Mumford. Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.
[14] Marco Laumanns,et al. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.
[15] Jin Peng,et al. Fuzzy Dominance Based on Credibility Distributions , 2005, FSKD.
[16] H. Kita,et al. Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[17] P. Yu. Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .
[18] Edmund K. Burke,et al. The influence of the fitness evaluation method on the performance of multiobjective search algorithms , 2006, Eur. J. Oper. Res..