MedGAN: Medical Image Translation using GANs

[1]  Yi-Hsuan Yang,et al.  Towards a Deeper Understanding of Adversarial Losses , 2019, ArXiv.

[2]  P. Babyn,et al.  Generative Adversarial Network in Medical Imaging: A Review , 2018, Medical Image Anal..

[3]  J. Noble,et al.  Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear , 2018, MICCAI.

[4]  Shu Liao,et al.  Towards MR-Only Radiotherapy Treatment Planning: Synthetic CT Generation Using Multi-view Deep Convolutional Neural Networks , 2018, MICCAI.

[5]  Jiebo Luo,et al.  Adversarial Sparse-View CBCT Artifact Reduction , 2018, MICCAI.

[6]  Jean-Philippe Thiran,et al.  Efficient Active Learning for Image Classification and Segmentation using a Sample Selection and Conditional Generative Adversarial Network , 2018, MICCAI.

[7]  Peter M. Full,et al.  Improving Surgical Training Phantoms by Hyperrealism: Deep Unpaired Image-to-Image Translation from Real Surgeries , 2018, MICCAI.

[8]  Henggui Zhang,et al.  VoxelAtlasGAN: 3D Left Ventricle Segmentation on Echocardiography with Atlas Guided Generation and Voxel-to-voxel Discrimination , 2018, MICCAI.

[9]  Guang Yang,et al.  DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction , 2018, IEEE Transactions on Medical Imaging.

[10]  Larry S. Davis,et al.  Stacked U-Nets: A No-Frills Approach to Natural Image Segmentation , 2018, ArXiv.

[11]  F. Schick,et al.  Automated reference-free detection of motion artifacts in magnetic resonance images , 2018, Magnetic Resonance Materials in Physics, Biology and Medicine.

[12]  Dinggang Shen,et al.  Medical Image Synthesis with Deep Convolutional Adversarial Networks , 2018, IEEE Transactions on Biomedical Engineering.

[13]  Hayit Greenspan,et al.  Cross-Modality Synthesis from CT to PET using FCN and GAN Networks for Improved Automated Lesion Detection , 2018, Eng. Appl. Artif. Intell..

[14]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[15]  Xiang Wei,et al.  Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect , 2018, ICLR.

[16]  Ali Borji,et al.  Pros and Cons of GAN Evaluation Measures , 2018, Comput. Vis. Image Underst..

[17]  Aykut Erdem,et al.  Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks , 2018, IEEE Transactions on Medical Imaging.

[18]  Nannan Li,et al.  MRI Image-to-Image Translation for Cross-Modality Image Registration and Segmentation , 2018, ArXiv.

[19]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Qianjin Feng,et al.  Predicting CT Image From MRI Data Through Feature Matching With Learned Nonlinear Local Descriptors , 2018, IEEE Transactions on Medical Imaging.

[21]  Arthur Gretton,et al.  Demystifying MMD GANs , 2018, ICLR.

[22]  Uiwon Hwang,et al.  How Generative Adversarial Nets and its variants Work: An Overview of GAN , 2017, ArXiv.

[23]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[24]  Tom White,et al.  Generative Adversarial Networks: An Overview , 2017, IEEE Signal Processing Magazine.

[25]  Dwarikanath Mahapatra,et al.  Image Super Resolution Using Generative Adversarial Networks and Local Saliency Maps for Retinal Image Analysis , 2017, MICCAI.

[26]  Won-Ki Jeong,et al.  Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss , 2017, IEEE Transactions on Medical Imaging.

[27]  Xuanqin Mou,et al.  Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss , 2017, IEEE Transactions on Medical Imaging.

[28]  Thierry Blu,et al.  MR‐based respiratory and cardiac motion correction for PET imaging , 2017, Medical Image Anal..

[29]  Jelmer M. Wolterink,et al.  Deep MR to CT Synthesis Using Unpaired Data , 2017, SASHIMI@MICCAI.

[30]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[31]  Dacheng Tao,et al.  Perceptual Adversarial Networks for Image-to-Image Transformation , 2017, IEEE Transactions on Image Processing.

[32]  Li Cheng,et al.  Synthesizing Filamentary Structured Images with GANs , 2017, ArXiv.

[33]  Max A. Viergever,et al.  Generative Adversarial Networks for Noise Reduction in Low-Dose CT , 2017, IEEE Transactions on Medical Imaging.

[34]  Yiming Yang,et al.  MMD GAN: Towards Deeper Understanding of Moment Matching Network , 2017, NIPS.

[35]  Jacob D. Abernethy,et al.  How to Train Your DRAGAN , 2017, ArXiv.

[36]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[37]  David Berthelot,et al.  BEGAN: Boundary Equilibrium Generative Adversarial Networks , 2017, ArXiv.

[38]  Hyunsoo Kim,et al.  Learning to Discover Cross-Domain Relations with Generative Adversarial Networks , 2017, ICML.

[39]  G. Litjens,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[40]  M. Kalra,et al.  Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network , 2017, IEEE Transactions on Medical Imaging.

[41]  Vishal M. Patel,et al.  Image De-Raining Using a Conditional Generative Adversarial Network , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[43]  Dimitris N. Metaxas,et al.  StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[44]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Dinggang Shen,et al.  Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features , 2016, LABELS/DLMIA@MICCAI.

[46]  Konstantinos Kamnitsas,et al.  Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks , 2016, MICCAI.

[47]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[49]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[50]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[52]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Yao Wu,et al.  Predict CT image from MRI data using KNN-regression with learned local descriptors , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[54]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[55]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[56]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[57]  Ronald M. Summers,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, IEEE Transactions on Medical Imaging.

[58]  Z. Jane Wang,et al.  A CNN Regression Approach for Real-Time 2D/3D Registration , 2016, IEEE Transactions on Medical Imaging.

[59]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[60]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[62]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[63]  Christopher Joseph Pal,et al.  Brain tumor segmentation with Deep Neural Networks , 2015, Medical Image Anal..

[64]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[65]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[66]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[67]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[68]  Jean-Baptiste Thibault,et al.  Ultra low dose CT for attenuation correction in PET/CT , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[69]  A. Bovik,et al.  Image information and visual quality , 2006, IEEE Transactions on Image Processing.

[70]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[71]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[72]  J H Siewerdsen,et al.  High resolution gel-dosimetry by optical-CT and MR scanning. , 2001, Medical physics.

[73]  Jinsung Yoon,et al.  GENERATIVE ADVERSARIAL NETS , 2018 .

[74]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[75]  Supplementary materials for: CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training , 2017 .

[76]  Qi Dou Multi-level Contextual 3D CNNs for False Positive Reduction in Pulmonary Nodule Detection , 2017 .

[77]  Yaozong Gao,et al.  Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model , 2016, IEEE Transactions on Medical Imaging.

[78]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[79]  Norberto Malpica,et al.  Single-image super-resolution of brain MR images using overcomplete dictionaries , 2013, Medical Image Anal..