Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions

The bipolar view in preference modeling distinguishes between negative and positive preferences. Negative preferences correspond to what is rejected, considered unacceptable, while positive preferences correspond to what is desired. But what is tolerated (i.e., not rejected) is not necessarily desired. Both negative and positive preferences can be a matter of degree. Bipolar preferences can be represented in possibilistic logic by two separate sets of formulas: prioritized constraints, which describe what is more or less tolerated, and weighted positive preferences, expressing what is particularly desirable. The problem of merging multiple-agent preferences in this bipolar framework is then discussed. Negative and positive preferences are handled separately and are combined in distinct ways. Since negative and positive preferences are stated separately, they may be inconsistent, especially in this context of preference fusion. Consistency can be enforced by restricting what is desirable to what is tolerated. After merging, and once the bipolar consistency is restored, the set of preferred solutions can be logically characterized. Preferred solutions should have the highest possible degree of feasibility, and only constraints with low priority may have to be discarded in case of inconsistency inside negative preferences. Moreover, preferred solutions should satisfy important positive preferences when feasible (positive preferences may be also inconsistent). Two types of preferred solutions can be characterized, either in terms of a disjunctive combination of the weighted positive preferences, or in terms of a cardinality-based evaluation.

[1]  Didier Dubois,et al.  Knowledge-Driven versus Data-Driven Logics , 2000, J. Log. Lang. Inf..

[2]  Eric Raufaste,et al.  A psychological study of bipolarity in the possibilistic framework , 2005 .

[3]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[4]  Jon Doyle,et al.  Preferential Semantics for Goals , 1991, AAAI.

[5]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[6]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[7]  Leon van der Torre,et al.  Utilitarian Desires , 2002, Autonomous Agents and Multi-Agent Systems.

[8]  Didier Dubois,et al.  Bipolarity in Flexible Querying , 2002, FQAS.

[9]  Souhila Kaci,et al.  Weakening conflicting information for iterated revision and knowledge integration , 2001, Artificial Intelligence.

[10]  J. M. Larrazabal,et al.  Reasoning about change , 1991 .

[11]  Didier Dubois,et al.  Bridging Logical, Comparative, and Graphical Possibilistic Representation Frameworks , 2001, ECSQARU.

[12]  Céline Lafage Représentation de préférences en logique : application à la décision de groupe , 2001 .

[13]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[14]  Jérôme Lang,et al.  Conditional Desires and Utilities: an Alternative Logical Approach to Qualitative Decision Theory , 1996, ECAI.

[15]  Francesca Rossi,et al.  Abstracting soft constraints: Framework, properties, examples , 2002, Artif. Intell..

[16]  Didier Dubois,et al.  Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.

[17]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[18]  M. Roubens,et al.  Fuzzy logic : state of the art , 1993 .

[19]  Jeff T. Larsen,et al.  Can people feel happy and sad at the same time? , 2001, Journal of personality and social psychology.

[20]  李幼升,et al.  Ph , 1989 .

[21]  N. Rescher The Logic of Preference , 1968 .

[22]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[23]  Leon van der Torre,et al.  Parameters for Utilitarian Desires in a Qualitative Decision Theory , 2001, Applied Intelligence.

[24]  Didier Dubois,et al.  A Practical Approach to Fusing Prioritized Knowledge Bases , 1999, EPIA.

[25]  Judea Pearl,et al.  Qualitative Decision Theory , 1994, AAAI.

[26]  Souhila Kaci,et al.  A possibilistic logic handling of strong preferences , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[27]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[28]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[29]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[30]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[31]  J. Cacioppo,et al.  Beyond Bipolar Conceptualizations and Measures: The Case of Attitudes and Evaluative Space , 1997, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[32]  E. Rolls Précis of The brain and emotion. , 2000, The Behavioral and brain sciences.

[33]  D. Dubois,et al.  Possibility theory and data fusion in poorly informed environments , 1994 .

[34]  Didier Dubois,et al.  Toll Sets and Toll Logic , 1993 .

[35]  Didier Dubois,et al.  Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.

[36]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[37]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[38]  Jon Doyle,et al.  A Logic of Relative Desire (Preliminary Report) , 1991, ISMIS.

[39]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[40]  Ronen I. Brafman,et al.  Introducing Variable Importance Tradeoffs into CP-Nets , 2002, UAI.

[41]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[42]  Thomas Schiex,et al.  Penalty Logic and its Link with Dempster-Shafer Theory , 1994, UAI.

[43]  Fahiem Bacchus,et al.  Utility Independence in a Qualitative Decision Theory , 1996, KR.

[44]  Thomas Schiex,et al.  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" , 1992, UAI.

[45]  H. Prade,et al.  Possibilistic logic , 1994 .

[46]  Souhila Kaci,et al.  Logical representation and fusion of prioritized information based on guaranteed possibility measures: Application to the distance-based merging of classical bases , 2003, Artif. Intell..

[47]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .