IBM Research Report Isometry-enforcing Data Transformations for Improving Sparse Model Learning
暂无分享,去创建一个
Bhuvana Ramabhadran | Dimitri Kanevsky | Guillermo A. Cecchi | Irina Rish | Avishy Carmi | D. Kanevsky | B. Ramabhadran | G. Cecchi | I. Rish | Avishy Carmi
[1] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[2] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[3] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[4] Tom M. Mitchell,et al. Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.
[5] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[6] E.J. Candes. Compressive Sampling , 2022 .
[7] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[8] Pini Gurfil,et al. Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms , 2010, IEEE Transactions on Signal Processing.
[9] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[10] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[11] Dimitri Kanevsky,et al. A Simple Method for Sparse Signal Recovery from Noisy Observations Using Kalman Filtering , 2008 .
[12] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.