IBM Research Report Isometry-enforcing Data Transformations for Improving Sparse Model Learning

Imposing sparsity constraints (such as l1-regularization) on the model parameters is a practical and efficient way of handling very high-dimensional data, which also yields interpretable models due to embedded feature-selection. Compressed sensing (CS) theory provides guarantees on the quality of sparse signal (in our case, model) reconstruction that relies on the so-called restricted isometry property (RIP) of the sensing (design) matrices. This, however, cannot be guaranteed as these matrices form a subset of the underlying data set. Nevertheless, as we show, one can find a distance-preserving linear transformation of the data such that any transformed subspace of the data satisfies the RIP at some level. We demonstrate the effects of such RIP-enforcing data transformation on sparse learning methods such as sparse and compressed Random Fields, as well as sparse regression (LASSO), in the context of classifying mental states based on fMRI data.