Simulating topological tensor networks with Majorana qubits

The realization of topological quantum phases of matter remains a key challenge to condensed matter physics and quantum information science. In this work, we demonstrate that progress in this direction can be made by combining concepts of tensor network theory with Majorana device technology. Considering the topological double-semion string-net phase as an example, we exploit the fact that the representation of topological phases by tensor networks can be significantly simpler than their description by lattice Hamiltonians. The building blocks defining the tensor network are tailored to realization via simple units of capacitively coupled Majorana bound states. In the case under consideration, this yields a remarkably simple blueprint of a synthetic double-semion string net, and one may be optimistic that the required device technology will be available soon. Our results indicate that the implementation of tensor network structures via mesoscopic quantum devices opens up a powerful avenue toward the realization and quantum simulation of synthetic topological quantum matter.

[1]  Hoang Duong Tuan,et al.  Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing , 2015, 1503.05345.

[2]  C. W. J. Beenakker,et al.  Flux-controlled quantum computation with Majorana fermions , 2013, 1303.4379.

[3]  J Eisert,et al.  Matrix-product operators and states: NP-hardness and undecidability. , 2014, Physical review letters.

[4]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[5]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[6]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[7]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[8]  Jens Eisert,et al.  Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks , 2017, 1704.01589.

[9]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[10]  M. Leijnse,et al.  Introduction to topological superconductivity and Majorana fermions , 2012, 1206.1736.

[11]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[12]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[13]  A. Doherty,et al.  Perturbative 2-body parent Hamiltonians for projected entangled pair states , 2014, 1407.4829.

[14]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[15]  Xiao-Gang Wen,et al.  Tensor-product representations for string-net condensed states , 2008, 0809.2821.

[16]  Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation , 2006, quant-ph/0609002.

[17]  E. Farhi,et al.  Perturbative gadgets at arbitrary orders , 2008, 0802.1874.

[18]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[19]  A. Doherty,et al.  Toric codes and quantum doubles from two-body Hamiltonians , 2010, 1011.1942.

[20]  L. Fidkowski,et al.  Discrete spin structures and commuting projector models for two-dimensional fermionic symmetry-protected topological phases , 2016, 1604.02145.

[21]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[22]  Steven T. Flammia,et al.  Classical Simulation of Quantum Error Correction in a Fibonacci Anyon Code , 2015, 1506.03815.

[23]  Ising anyons in frustration-free Majorana-dimer models , 2016, 1605.06125.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  J. Eisert,et al.  Fermionic topological quantum states as tensor networks , 2016, 1609.02574.

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  Alexander Altland,et al.  Multiterminal Coulomb-Majorana junction. , 2012, Physical review letters.

[28]  J. Cirac,et al.  Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians. , 2013, Physical review letters.

[29]  M. Manfra,et al.  Scaling of Majorana Zero-Bias Conductance Peaks. , 2017, Physical review letters.

[30]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[31]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[32]  T. Osborne,et al.  Interplay of topological order and spin glassiness in the toric code under random magnetic fields , 2010, 1004.4632.

[33]  Barbara M Terhal,et al.  From Majorana fermions to topological order. , 2012, Physical review letters.

[34]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[35]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[36]  David Poulin,et al.  Fault-Tolerant Quantum Error Correction for non-Abelian Anyons , 2016, Communications in Mathematical Physics.

[37]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[38]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[39]  Y. Oreg,et al.  Spin liquids from Majorana zero modes in a Cooper-pair box , 2018, Physical Review B.

[40]  N. E. Bonesteel,et al.  Quantum circuits for measuring Levin-Wen operators , 2012, 1206.6048.

[41]  M. Freedman,et al.  From String Nets to Nonabelions , 2006, cond-mat/0610583.

[42]  A. Altland,et al.  Roadmap to Majorana surface codes , 2016, 1606.08408.

[43]  Daniel Loss,et al.  Universal quantum computation with hybrid spin-Majorana qubits , 2016, 1602.06923.

[44]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[45]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[46]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[47]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[48]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[49]  C. Marcus,et al.  Majorana bound state in a coupled quantum-dot hybrid-nanowire system , 2016, Science.

[50]  David Poulin,et al.  Thermalization, Error-Correction, and Memory Lifetime for Ising Anyon Systems , 2013, 1311.0019.

[51]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[52]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[53]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[54]  O. Buerschaper Twisted injectivity in projected entangled pair states and the classification of quantum phases , 2013, 1307.7763.

[55]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[56]  Quantum Phase Transitions of the Majorana Toric Code in the Presence of Finite Cooper-Pair Tunneling. , 2017, Physical review letters.

[57]  F. Pollmann,et al.  Numerical study of a transition between Z 2 topologically ordered phases , 2014, 1403.0768.

[58]  B. Béri Majorana-Klein hybridization in topological superconductor junctions. , 2012, Physical review letters.

[59]  R. Aguado Majorana quasiparticles in condensed matter , 2017, 1711.00011.

[60]  N. Cooper,et al.  Topological Kondo effect with Majorana fermions. , 2012, Physical review letters.

[61]  Michael Marien,et al.  Anyons and matrix product operator algebras , 2015, 1511.08090.

[62]  Y. Oreg,et al.  Majorana zero modes in superconductor–semiconductor heterostructures , 2017, Nature Reviews Materials.

[63]  A. Altland,et al.  Towards Realistic Implementations of a Majorana Surface Code. , 2015, Physical review letters.

[64]  M. Troyer,et al.  Fibonacci topological order from quantum nets. , 2012, Physical review letters.

[65]  Liang Fu,et al.  Majorana Fermion Surface Code for Universal Quantum Computation , 2015, 1504.01724.

[66]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[67]  Cenke Xu,et al.  Fractionalization in Josephson junction arrays hinged by quantum spin Hall edges , 2009, 0911.1782.

[68]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[69]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[70]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[71]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[72]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[73]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[74]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[75]  J. A. Logan,et al.  Quantized Majorana conductance , 2017, Nature.

[76]  J. A. Logan,et al.  Epitaxy of advanced nanowire quantum devices , 2017, Nature.

[77]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[78]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[79]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[80]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[81]  L. Fu,et al.  Teleportation-based quantum information processing with Majorana zero modes , 2016, 1609.00950.

[82]  Liang Fu,et al.  Electron teleportation via Majorana bound states in a mesoscopic superconductor. , 2009, Physical review letters.