Change Detection with Compact Polarimetric SAR for Monitoring Wetlands

Abstract. Compact polarimetric synthetic aperture radar (SAR) architecture is an SAR configuration that consists of transmitting a single circular polarization (left or right) or a 45° oriented linear signal while receiving two linear polarizations, horizontal and vertical. In this study we investigate the potential of the compact polarimetric SAR mode for wetland monitoring applications. Whitewater Lake located in Manitoba, Canada, is selected as a case study where simulated compact polarimetric SAR data are obtained using RADARSAT-2 Fine Quad-POL SAR images. The ability of the compact polarimetric data to monitor wetlands using the Wishart-Chernoff distance is studied and compared to the results obtained using fully polarimetric data. Results of this study show that compact polarimetry provides monitoring capabilities for wetlands. Promising change detection mapping results based on the compact polarimetric coherency matrices are obtained using the Wishart-Chernoff distance. This could be useful for flagging change in the wetland environment for further evaluation and action if required. The compact polarimetry mode could be an attractive configuration for future SAR systems due to the combination of swath coverage, moderate resolution, and enhanced information content for monitoring changes in surface water and flooded vegetation. Résumé. L’architecture du radar à synthèse d’ouverture (SAR) en polarimétrie compacte est une configuration SAR qui transmet un seul signal en polarisation circulaire (gauche ou droite) ou un signal linéaire à 45 degrés tout en recevant deux polarisations linéaires, horizontales et verticales. Dans cette étude, nous étudions le potentiel du mode en polarimétrie compacte du SAR pour les applications de surveillance des zones humides. Le lac Whitewater, situé au Manitoba, au Canada, est sélectionné pour une étude de cas où les données SAR en polarimétrie compacte simulées sont obtenues en utilisant les images SAR en mode quad-pol fin du RADARSAT-2. La capacité des données en polarimétrie compacte pour surveiller les zones humides à l’aide de la distance Wishart-Chernoff a été étudiée, puis comparée aux résultats obtenus en utilisant les données en polarimétrie complète. Les résultats de cette étude montrent que la polarimétrie compacte offre des capacités de surveillance pour les zones humides. Des résultats prometteurs de la cartographie de détection du changement basée sur les matrices de cohérence de la polarimétrie compacte ont été obtenus en utilisant la distance Wishart-Chernoff. Ceci pourrait être utile pour signaler les changements dans les zones humides pour une évaluation supplémentaire et une action le cas échéant. Le mode en polarimétrie compacte pourrait être une configuration attrayante pour les futurs systèmes SAR en raison de la combinaison de la largeur de la couverture au sol, de la résolution moyenne et du contenu d’information effective pour la surveillance des changements dans les eaux de surface et la végétation inondée.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Jean-Claude Souyris,et al.  Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  J. Yackel,et al.  The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data , 2014 .

[4]  Mark L. Williams Potential for Surface Parameter Estimation Using Compact Polarimetric SAR , 2008, IEEE Geoscience and Remote Sensing Letters.

[5]  Brian Brisco,et al.  A semi-automated tool for surface water mapping with RADARSAT-1 , 2009 .

[6]  Mohammed Dabboor,et al.  An Unsupervised Classification Approach for Polarimetric SAR Data Based on the Chernoff Distance for Complex Wishart Distribution , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Heather McNairn,et al.  Compact polarimetry overview and applications assessment , 2010 .

[8]  W. P. Waite,et al.  Use of Seasat satellite radar imagery for the detection of standing water beneath forest vegetation , 1981 .

[9]  Floyd M. Henderson,et al.  Radar detection of wetland ecosystems: a review , 2008 .

[10]  Marek Banaszkiewicz,et al.  Testing Texture of VHR Panchromatic Data as a Feature of Land Cover Classification , 2015, Acta Geophysica.

[11]  Michael J. Collins,et al.  On the Reconstruction of Quad-Pol SAR Data From Compact Polarimetry Data For Ocean Target Detection , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[12]  P. Treitz,et al.  Image classification of a northern peatland complex using spectral and plant community data , 2003 .

[13]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[14]  J. A. Gomes,et al.  Land cover update by supervised classification of segmented ASTER images , 2005 .

[15]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[16]  Eric Pottier,et al.  Estimation of Soil Moisture and Faraday Rotation From Bare Surfaces Using Compact Polarimetry , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. E. Harrison Classification of Tropical Vegetation , 2016 .

[18]  Andreas Schmitt,et al.  Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery , 2013 .

[19]  Philip A. Townsend,et al.  Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR , 2002 .

[20]  E. Pottier,et al.  Assessment of forest biomass retrieval from compact-pol SAR data , 2012 .

[21]  R. Keith Raney,et al.  Hybrid-Polarity SAR Architecture , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[22]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[23]  R. J. Brown,et al.  Monitoring local environmental conditions with SIR-C/X-SAR , 1997 .

[24]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Jean-Claude Souyris,et al.  Classification of Tropical Vegetation Using Multifrequency Partial SAR Polarimetry , 2011, IEEE Geoscience and Remote Sensing Letters.

[26]  Sébastien Angélliaume,et al.  Compact PolInSAR for vegetation characterisation , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[27]  W. Xiong Communications Comments on "Compact Polarimetry Based on Symmetry Properties of Geophysical Media: The π/4 Mode" , 2006 .

[28]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  Eric S. Kasischke,et al.  Monitoring South Florida Wetlands Using ERS-1 SAR Imagery , 1997 .

[30]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[32]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[33]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[34]  Jong-Sen Lee,et al.  Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery , 2009 .

[35]  Mohammed Dabboor,et al.  Towards sea ice classification using simulated RADARSAT Constellation Mission compact polarimetric SAR imagery , 2014 .

[36]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  Ridha Touzi,et al.  Wetland Characterization using Polarimetric RADARSAT-2 Capability , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[38]  B. Brisco,et al.  Evaluation of C-band polarization diversity and polarimetry for wetland mapping , 2011 .

[39]  Hao Chen,et al.  Compact Decomposition Theory , 2012, IEEE Geoscience and Remote Sensing Letters.

[40]  Shao Yun,et al.  Compact polarimetry assessment for rice and wetland mapping , 2013 .

[41]  Brian Brisco,et al.  Water resource applications with RADARSAT-2 – a preview , 2008, Int. J. Digit. Earth.

[42]  R. Raney,et al.  The m‐chi decomposition of hybrid dual‐polarimetric radar data with application to lunar craters , 2012 .

[43]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .