On the Values of Kloosterman Sums

Given a prime p and a positive integer n, we show that the shifted Kloosterman sums Sigma<sub>xisinF</sub> <sub>p</sub> <sub>n</sub>Psi(x + alphax<sup>pn-2</sup>)=Sigma<sub>xisinF*</sub> <sub>p</sub> <sub>n</sub>Psi(x+alphax<sup>-1</sup>)+1, alphaisinF*<sub>p</sub>n where Psi is a nontrivial additive character of a finite field F<sub>p</sub>n of p<sup>n</sup> elements, do not vanish if alpha belongs to a small subfield F<sub>p</sub>m sube F<sub>p</sub>n. This complements recent results of P. Charpin and G. Gong which in turn were motivated by some applications to bent functions.

[1]  Nicolas Gouillon,et al.  Explicit lower bounds for linear forms in two logarithms , 2006 .

[2]  S M Voronin ON KLOOSTERMAN SUMS , 1993 .

[3]  Kenneth S. Williams,et al.  Quartics over (2ⁿ) , 1972 .

[4]  Marko J. Moisio,et al.  On the moments of Kloosterman sums and fibre products of Kloosterman curves , 2008, Finite Fields Their Appl..

[5]  Kalle Ranto,et al.  Elliptic curves and explicit enumeration of irreducible polynomials with two coefficients prescribed , 2008, Finite Fields Their Appl..

[6]  P. Voutier,et al.  Primitive divisors of Lucas and Lehmer sequences , 1995 .

[7]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[8]  Nicholas M. Katz,et al.  Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116) , 1988 .

[9]  Nicholas M. Katz,et al.  Gauss Sums, Kloosterman Sums, And Monodromy Groups , 1987 .

[10]  Petr Lisonek,et al.  On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.

[11]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[12]  Benji Fisher,et al.  Kloosterman sums as algebraic integers , 1995 .

[13]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[14]  A. Schinzel Primitive divisors of the expression An - Bn in algebraic number fields. , 1968 .

[15]  Kalle Ranto,et al.  Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros , 2007, Finite Fields Their Appl..

[16]  Michel Laurent,et al.  Linear forms in two logarithms and interpolation determinants II , 1994 .

[17]  M. Moisio,et al.  Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm , 2007, 0706.2112.

[18]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[19]  Harald Niederreiter,et al.  The distribution of values of Kloosterman sums , 1991 .

[20]  Kunrui Yu Report on p-adic logarithmic forms , 2002 .

[21]  Paul Voutier,et al.  Primitive divisors of Lucas and Lehmer sequences, III , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[23]  E ShparlinskiIgor On the values of Kloosterman sums , 2009 .

[24]  Kunrui Yu A Panorama in Number Theory or The View from Baker's Garden: Report on p -adic Logarithmic Forms , 2002 .

[25]  M. Taylor INTRODUCTION TO CYCLOTOMIC FIELDS(Graduate Texts in Mathematics, 83) , 1983 .

[26]  Daqing Wan,et al.  Minimal Polynomials and Distinctness of Kloosterman Sums , 1995 .

[27]  A. Schinzel,et al.  Primitive divisors of the expression An - Bn in algebraic number fields. , 1968 .