A quantitative structure–property relationship for determination of enthalpy of fusion of pure compounds

In this study, the quantitative structure–property relationship method is applied to predict the enthalpy of fusion of pure chemical compounds at their normal melting point. A genetic algorithm-based multivariate linear regression is used to select the most statistically effective molecular descriptors for evaluating this property. To propose a comprehensive and predictive model, 3,846 pure chemical compounds are investigated. The root mean square of error and the average absolute deviation of the model are equal to 2.57 kJ/mol and 9.7%.

[1]  Svava Ósk Jónsdóttir,et al.  QSPR Models Based on Molecular Mechanics and Quantum Chemical Calculations. 2. Thermodynamic Properties of Alkanes, Alcohols, Polyols, and Ethers , 2003 .

[2]  P. J. van Ekeren,et al.  Heat Capacities and Thermal Properties of a Homogeneous Ethylene-1-octene Copolymer by Adiabatic Calorimetry , 2000 .

[3]  R. Boggia,et al.  Genetic algorithms as a strategy for feature selection , 1992 .

[4]  Farhad Gharagheizi,et al.  Prediction of the Watson Characterization Factor of Hydrocarbon Components from Molecular Properties , 2008 .

[5]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[6]  R. Nomen,et al.  Determination of Activation Energies by Using Different Factors Φ in Adiabatic Calorimetry , 1999 .

[7]  A. Saboury,et al.  A thermodynamic study on the interaction of nickel ion with myelin basic protein by isothermal titration calorimetry , 2010 .

[8]  Mehdi Mehrpooya,et al.  A Molecular Approach for the Prediction of Sulfur Compound Solubility Parameters , 2009 .

[9]  N. Belie,et al.  Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry , 2008 .

[10]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[11]  F. Gharagheizi,et al.  Prediction of Triple-Point Temperature of Pure Components Using their Chemical Structures , 2010 .

[12]  J. Chickos,et al.  Total phase change entropies and enthalpies: An update on their estimation and applications to the estimations of amphiphillic fluorocarbon–hydrocarbon molecules , 2002 .

[13]  Matheus P. Freitas,et al.  QSPR predictions of heat of fusion of organic compounds using Bayesian regularized artificial neural networks , 2010 .

[14]  Farhad Gharagheizi New Neural Network Group Contribution Model for Estimation of Lower Flammability Limit Temperature of Pure Compounds , 2009 .

[15]  Ali Eslamimanesh,et al.  Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method , 2011 .

[16]  William J. Welsh,et al.  Three-Dimensional Quantitative Structure-Property Relationship (3D-QSPR) Models for Prediction of Thermodynamic Properties of Polychlorinated Biphenyls (PCBs): Enthalpies of Fusion and Their Application to Estimates of Enthalpies of Sublimation and Aqueous Solubilities , 2003, J. Chem. Inf. Comput. Sci..

[17]  Abolghasem Jouyban,et al.  Handbook of Solubility Data for Pharmaceuticals , 2009 .

[18]  Kjeld Rasmussen,et al.  QSPR models based on molecular mechanics and quantum chemical calculations , 2002, Journal of molecular modeling.

[19]  R. Todeschini,et al.  Detecting bad regression models: multicriteria fitness functions in regression analysis , 2004 .

[20]  F. Gharagheizi Prediction of upper flammability limit percent of pure compounds from their molecular structures. , 2009, Journal of hazardous materials.

[21]  F. Gharagheizi Quantitative Structure−Property Relationship for Prediction of the Lower Flammability Limit of Pure Compounds , 2008 .

[22]  Farhad Gharagheizi,et al.  QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN , 2007 .

[23]  E. Utzig Heat Conduction Microcalorimeter for Thermokinetics and Titration Experiments , 1998 .

[24]  S. E. El-Bushra Construction of an Isoperibol Calorimeter to Measure the Specific Heat Capacity of Foods Between 20 and 90°C , 2001 .

[25]  A simple equation for prediction of net heat of combustion of pure chemicals , 2008 .

[26]  F. Gharagheizi,et al.  Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method , 2011 .

[27]  Z. Tan,et al.  A study on the thermodynamic properties of polyimide BTDA-ODA by adiabatic calorimetry and thermal analysis , 2002 .

[28]  S. Dufour,et al.  Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles , 2009 .

[29]  F. Gharagheizi,et al.  Determination of Parachor of Various Compounds Using an Artificial Neural Network−Group Contribution Method , 2011 .

[30]  Chang Kon Kim,et al.  Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials , 2004, J. Comput. Chem..

[31]  Chau-Chyun Chen,et al.  Predicting Thermophysical Properties of Mono- and Diglycerides with the Chemical Constituent Fragment Approach , 2010 .

[32]  C. Yaws Chemical properties handbook , 1999 .

[33]  Prediction of Vaporization Enthalpy of Pure Compounds using a Group Contribution-Based Method , 2011 .

[34]  F. Gharagheizi A new group contribution-based model for estimation of lower flammability limit of pure compounds. , 2009, Journal of hazardous materials.

[35]  F. Gharagheizi,et al.  A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals , 2010 .

[36]  M. Kaminski,et al.  A Conduction Calorimeter for Measuring the Heat of Cement Hydration in the Initial Hydration Period , 2001 .

[37]  Farhad Gharagheizi,et al.  Estimation of Aniline Point Temperature of Pure Hydrocarbons: A Quantitative Structure−Property Relationship Approach , 2009 .

[38]  A. Beezer,et al.  Solid-state reactions from isothermal heat conduction microcalorimetry theoretical approach and evaluation via simulated data , 2003 .

[39]  Y. Shao,et al.  An investigation on eutectic binary phase diagram of volatilizable energetic materials by high pressure DSC , 2010 .

[40]  Chemical Structure-Based Model for Estimation of the Upper Flammability Limit of Pure Compounds , 2010 .

[41]  V. Torra,et al.  Conduction Calorimeters Heat Transmission Systems with Uncertainties , 1998 .

[42]  T. Ageeva,et al.  Thermokinetic Studies of Porphyrin Complexation in Non-Aqueous Solutions by Heat Conduction Microcalorimetry , 2004 .

[43]  F. Gharagheizi,et al.  Prediction of the θ(UCST) of Polymer Solutions: A Quantitative Structure-Property Relationship Study , 2009 .

[44]  F. Gharagheizi A new molecular-based model for prediction of enthalpy of sublimation of pure components , 2008 .

[45]  D. Dalmazzone,et al.  Modernization and validation of an isoperibol rotating bomb calorimeter for the measurement of energies of combustion of sulphur compounds , 2010 .

[46]  F. Gharagheizi,et al.  Prediction of molecular diffusivity of pure components into air: a QSPR approach. , 2008, Chemosphere.

[47]  F. Gharagheizi,et al.  Prediction of Crystal Lattice Energy Using Enthalpy of Sublimation: A Group Contribution-Based Model , 2011 .

[48]  F. Gharagheizi,et al.  Prediction of Henry’s Law Constant of Organic Compounds in Water from a New Group-Contribution-Based Model , 2010 .

[49]  F. Gharagheizi,et al.  QSPR approach for determination of parachor of non-electrolyte organic compounds , 2011 .

[50]  A. Bordbar,et al.  Energitics of micellizaion of sodium n-dodecyl sulfate at physiological conditions using isothermal titration calorimetry , 2009 .

[51]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[52]  B. Schröder,et al.  Labtermo: Methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry , 2007 .

[53]  J. Moreno,et al.  A versatile and high-precision solution—reaction isoperibol calorimeter , 2008 .

[54]  Mehdi Mehrpooya,et al.  Prediction of standard chemical exergy by a three descriptors QSPR model , 2007 .

[55]  F. Gharagheizi,et al.  Prediction of Standard Enthalpy of Formation by a QSPR Model , 2007, International Journal of Molecular Sciences.

[56]  Ali Eslamimanesh,et al.  Representation/Prediction of Solubilities of Pure Compounds in Water Using Artificial Neural Network−Group Contribution Method , 2011 .

[57]  Farhad Gharagheizi,et al.  QSPR Studies for Solubility Parameter by Means of Genetic Algorithm-Based Multivariate Linear Regression and Generalized Regression Neural Network , 2008 .

[58]  Farhad Gharagheizi,et al.  Use of Artificial Neural Network-Group Contribution Method to Determine Surface Tension of Pure Compounds , 2011 .

[59]  F. Gharagheizi,et al.  Prediction of Flash Point Temperature of Pure Components Using a Quantitative Structure–Property Relationship Model , 2008 .

[60]  Mehdi Mehrpooya,et al.  Prediction of some important physical properties of sulfur compounds using quantitative structure–properties relationships , 2008, Molecular Diversity.

[61]  F. Gharagheizi,et al.  A Molecular‐Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents , 2008 .

[62]  L. Sun,et al.  Adiabatic calorimetry and thermal analysis on acetaminophen , 2006 .

[63]  F. Gharagheizi,et al.  Estimation of molecular diffusivity of pure chemicals in water: a quantitative structure–property relationship study , 2009, SAR and QSAR in environmental research.

[64]  Ali Eslamimanesh,et al.  Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm , 2011 .

[65]  Farhad Gharagheizi,et al.  An accurate model for prediction of autoignition temperature of pure compounds. , 2011, Journal of hazardous materials.

[66]  Lili Wu,et al.  Studies of mechanism of silica polymerization reactions in the combination of silica sol and potassium sodium waterglass via isothermal heat conduction microcalorimetry , 2010 .

[67]  A NEW ACCURATE NEURAL NETWORK QUANTITATIVE STRUCTURE- PROPERTY RELATIONSHIP FOR PREDICTION OF ? (LOWER CRITICAL SOLUTION TEMPERATURE) OF POLYMER SOLUTIONS , 2007 .

[68]  F. Socorro,et al.  Micro-Effects on Continuous-Injection Heat Conduction Calorimetry , 1998 .

[69]  F. Gharagheizi A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. , 2009, Journal of hazardous materials.

[70]  F. Gharagheizi Prediction of the Standard Enthalpy of Formation of Pure Compounds Using Molecular Structure , 2009 .