How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality

[1]  Ashvini Chaturvedi,et al.  Hyperspectral Image Classification , 2019, Processing and Analysis of Hyperspectral Data.

[2]  S. Ustin,et al.  Modeling Leaf Optical Properties:prospect , 2019, Leaf Optical Properties.

[3]  G. Francis,et al.  Techniques of Pigment Identification , 2018 .

[4]  Stéphane Jacquemoud,et al.  PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle , 2017 .

[5]  Kenneth L. McNally,et al.  Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice , 2017, Scientific Reports.

[6]  L. Junker,et al.  Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation. , 2016, Physiologia plantarum.

[7]  P. Townsend,et al.  Spectroscopic determination of ecologically relevant plant secondary metabolites , 2016 .

[8]  Roberta E. Martin,et al.  Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing , 2016 .

[9]  Yufeng Ge,et al.  A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding , 2016, Comput. Electron. Agric..

[10]  J. G. Lyon,et al.  Nondestructive Estimation of Foliar Pigment (Chlorophylls, Carotenoids, and Anthocyanins) Contents: Evaluating a Semianalytical Three-Band Model , 2016 .

[11]  Raymond F. Kokaly,et al.  Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[12]  Clayton C. Kingdon,et al.  Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. , 2015, Ecological applications : a publication of the Ecological Society of America.

[13]  Marco Landi,et al.  Multiple functional roles of anthocyanins in plant-environment interactions. , 2015 .

[14]  Margaret Kalacska,et al.  Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image , 2015 .

[15]  Clayton C. Kingdon,et al.  Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy , 2015 .

[16]  John A. Gamon,et al.  Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors , 2015 .

[17]  Roberta E. Martin,et al.  Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy , 2015 .

[18]  Ping Zhong,et al.  Active Learning With Gaussian Process Classifier for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Qin Zhang,et al.  A Review of Imaging Techniques for Plant Phenotyping , 2014, Sensors.

[20]  Roberta E. Martin,et al.  Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region. , 2014, The New phytologist.

[21]  Jean-Baptiste Féret,et al.  Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy. , 2014, Ecological applications : a publication of the Ecological Society of America.

[22]  Naif Alajlan,et al.  Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[23]  Scott D. Noble,et al.  Spectrographic measurement of plant pigments from 300 to 800 nm , 2014 .

[24]  Roberta E. Martin,et al.  Amazonian functional diversity from forest canopy chemical assembly , 2014, Proceedings of the National Academy of Sciences.

[25]  J. Raven Rubisco: still the most abundant protein of Earth? , 2013, The New phytologist.

[26]  David Riaño,et al.  Estimating canopy water content from spectroscopy , 2012 .

[27]  Jean-Baptiste Féret,et al.  Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. , 2012, Journal of plant physiology.

[28]  A. Hannoufa,et al.  Regulation of carotenoid accumulation in plants , 2012 .

[29]  Taha Y. Al-Edany,et al.  Taxonomic Significance of Anatomical Characters in Some Species of the Family Myrtaceae , 2012 .

[30]  Luis Alonso,et al.  Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Jerome J. Workman,et al.  Practical Guide and Spectral Atlas for Interpretive Near , 2012 .

[32]  C. Cazzonelli Carotenoids in nature: insights from plants and beyond. , 2011, Functional plant biology : FPB.

[33]  K. Barry,et al.  Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling , 2011 .

[34]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[35]  Gregory P Asner,et al.  Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. , 2011, The New phytologist.

[36]  Robert Eugene Blankenship Early Evolution of Photosynthesis1 , 2010, Plant Physiology.

[37]  C. Rumpel,et al.  Fate of lignins in soils: A review , 2010 .

[38]  Tao Cheng,et al.  Spectroscopic determination of leaf water content using continuous wavelet analysis , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[39]  J. Weng,et al.  The origin and evolution of lignin biosynthesis. , 2010, The New phytologist.

[40]  Susan L Ustin,et al.  Remote sensing of plant functional types. , 2010, The New phytologist.

[41]  Jean-Yves Tourneret,et al.  Enhancing Hyperspectral Image Unmixing With Spatial Correlations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[42]  U. Schurr,et al.  Continuous Turnover of Carotenes and Chlorophyll a in Mature Leaves of Arabidopsis Revealed by 14CO2 Pulse-Chase Labeling[OA] , 2010, Plant Physiology.

[43]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[44]  Michael E. Schaepman,et al.  Retrieval of foliar information about plant pigment systems from high resolution spectroscopy , 2009 .

[45]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[46]  L. Poorter,et al.  Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. , 2009, The New phytologist.

[47]  Takeshi Inoue,et al.  Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. , 2009, Plant & cell physiology.

[48]  P. Reich,et al.  A global study of relationships between leaf traits, climate and soil measures of nutrient fertility , 2009 .

[49]  S. Frolking,et al.  Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks , 2008, Proceedings of the National Academy of Sciences.

[50]  Gladimir V. G. Baranoski,et al.  An Investigation on Sieve and Detour Effects Affecting the Interaction of Collimated and Diffuse Infrared Radiation (750 to 2500 nm) With Plant Leaves , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Tim R. Moore,et al.  Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog , 2007 .

[52]  Derek R. Peddle,et al.  Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents , 2007, Oecologia.

[53]  Govindjee,et al.  Spectral signatures of photosynthesis. I. Review of Earth organisms. , 2007, Astrobiology.

[54]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[55]  Y. Manetas,et al.  The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. , 2006, Tree physiology.

[56]  E. Pallé,et al.  Vegetation Signature in the Observed Globally Integrated Spectrum of Earth Considering Simultaneous Cloud Data: Applications for Extrasolar Planets , 2006, astro-ph/0604420.

[57]  S. Ollinger,et al.  Net Primary Production and Canopy Nitrogen in a Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data , 2005, Ecosystems.

[58]  William G. Lee,et al.  Modulation of leaf economic traits and trait relationships by climate , 2005 .

[59]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[60]  J. Read,et al.  Herbivore damage, resource richness and putative defences in juvenile versus adult Eucalyptus leaves , 2005 .

[61]  D. Roberts,et al.  Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales , 2004, Ecosystems.

[62]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[63]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[64]  S. Ollinger,et al.  DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN , 2002 .

[65]  S. Wand,et al.  Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. , 2002, The New phytologist.

[66]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[67]  L. Arnold,et al.  A test for the search for life on extrasolar planets - Looking for the terrestrial vegetation signature in the Earthshine spectrum , 2002, astro-ph/0206314.

[68]  K. Thompson,et al.  Leaf traits as indicators of resource-use strategy in floras with succulent species , 2002 .

[69]  D. Ackerly,et al.  Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses , 2002, Oecologia.

[70]  Stéphane Jacquemoud,et al.  Simulation of photon transport in a three‐dimensional leaf: implications for photosynthesis , 2001 .

[71]  Ben J Hicks,et al.  Informal information for web-based engineering catalogues , 2001, SPIE Optics East.

[72]  Timothy M. Collins,et al.  Phylogenetic and Ontogenetic Influences on the Distribution of Anthocyanins and Betacyanins in Leaves of Tropical Plants , 2001, International Journal of Plant Sciences.

[73]  Sam P. Brown,et al.  Autumn tree colours as a handicap signal , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  B. Milborrow The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. , 2001, Journal of experimental botany.

[75]  Jean-Philippe Gastellu-Etchegorry,et al.  A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry , 2001 .

[76]  Raymond F. Kokaly,et al.  Investigating a Physical Basis for Spectroscopic Estimates of Leaf Nitrogen Concentration , 2001 .

[77]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[78]  S. James,et al.  Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves. , 2000, Tree physiology.

[79]  P. Matile,et al.  Biochemistry of Indian summer: physiology of autumnal leaf coloration , 2000, Experimental Gerontology.

[80]  Linda Chalker-Scott,et al.  Environmental Significance of Anthocyanins in Plant Stress Responses , 1999 .

[81]  D. Ackerly Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models , 1999, Oecologia.

[82]  K. Pandey A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy , 1999 .

[83]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[84]  J. Lindsey,et al.  PhotochemCAD ‡ : A Computer‐Aided Design and Research Tool in Photochemistry , 1998 .

[85]  David T. Bell,et al.  Leaf Form and Photosynthesis , 1997 .

[86]  Thomas C. Vogelmann,et al.  Focusing of light by leaf epidermal cells , 1996 .

[87]  A. Gilmore,et al.  In vivo functions of carotenoids in higher plants , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[88]  William K. Smith,et al.  Leaves and light capture: Light propagation and gradients of carbon fixation within leaves , 1996 .

[89]  J. Mackenzie,et al.  Organic-inorganic composites with optical properties in the near-infrared , 1995 .

[90]  Josep Peñuelas,et al.  Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis , 1995 .

[91]  Hendrik Buiteveld,et al.  Optical properties of pure water , 1994, Other Conferences.

[92]  D. M. Moss,et al.  Spectral reflectance measurements in the genus Sphagnum , 1993 .

[93]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[94]  F. Stuart Chapin,et al.  Evolution of Suites of Traits in Response to Environmental Stress , 1993, The American Naturalist.

[95]  H. Mohr,et al.  ABSORPTION SPECTRA OF LEAVES CORRECTED FOR SCATTERING and DISTRIBUTIONAL ERROR: A RADIATIVE TRANSFER and ABSORPTION STATISTICS TREATMENT , 1993 .

[96]  A. Stapleton,et al.  Ultraviolet Radiation and Plants: Burning Questions. , 1992, The Plant cell.

[97]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[98]  G. Carter PRIMARY AND SECONDARY EFFECTS OF WATER CONTENT ON THE SPECTRAL REFLECTANCE OF LEAVES , 1991 .

[99]  Thomas C. Vogelmann,et al.  Epidermal focussing and effects upon photosynthetic light‐harvesting in leaves of Oxalis , 1990 .

[100]  O. Björkman,et al.  Leaf Xanthophyll content and composition in sun and shade determined by HPLC , 1990, Photosynthesis Research.

[101]  P. Curran Remote sensing of foliar chemistry , 1989 .

[102]  Thomas C. Vogelmann,et al.  Epidermal focussing and the light microenvironment within leaves of Medicago sativa , 1989 .

[103]  M. Querry,et al.  Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. , 1989, Applied optics.

[104]  N. L. Owen,et al.  Infrared Studies of “Hard” and “Soft” Woods , 1989 .

[105]  D. Tilman The Resource-Ratio Hypothesis of Plant Succession , 1985, The American Naturalist.

[106]  David W. Lee,et al.  Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. , 1985, Applied optics.

[107]  B. E. Mahall,et al.  Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius , 1985, Oecologia.

[108]  C. Field,et al.  Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program , 1983, Oecologia.

[109]  H. Mooney,et al.  Photosynthetic capacity in relation to leaf position in desert versus old-field annuals , 1981, Oecologia.

[110]  R. Ellis The most abundant protein in the world , 1979 .

[111]  Erich Adler,et al.  Lignin chemistry—past, present and future , 1977, Wood Science and Technology.

[112]  H. Mooney,et al.  Leaf Pubescence: Effects on Absorptance and Photosynthesis in a Desert Shrub , 1976, Science.

[113]  J. Woolley,et al.  Refractive index of soybean leaf cell walls. , 1975, Plant physiology.

[114]  Dudley A. Williams,et al.  Optical properties of water in the near infrared. , 1974 .

[115]  H. Gausman,et al.  LEAF REFLECTANCE OF NEAR-INFRARED , 1974 .

[116]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[117]  J. Woolley Reflectance and transmittance of light by leaves. , 1971, Plant physiology.

[118]  H. Gausman,et al.  Mean effective optical constants of thirteen kinds of plant leaves. , 1970, Applied optics.

[119]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[120]  W. Ziechmann,et al.  Spectroscopic investigations of lignin, humic substances and peat , 1964 .

[121]  J. Curcio,et al.  Near infrared absorption spectrum of liquid water , 1951 .

[122]  Jean-Baptiste Féret,et al.  Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis , 2014 .

[123]  J. Araus,et al.  Field high-throughput phenotyping: the new crop breeding frontier. , 2014, Trends in plant science.

[124]  N. Yan,et al.  Alcohol Mediated Liquefaction of Lignocellulosic Materials: A Mini Review , 2013 .

[125]  Gregory Asner,et al.  Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[126]  G. Zheng,et al.  Remote Sensing of Environment , 2012 .

[127]  T. Sharkey,et al.  Chloroplast to Leaf , 2004 .

[128]  David W. Lee Anthocyanins in Leaves: Distribution, Phylogeny and Development , 2002 .

[129]  David W. Lee,et al.  Anthocyanins in Leaves and Other Vegetative Organs: An Introduction , 2002 .

[130]  Thomas C. Vogelmann,et al.  Plant Tissue Optics , 1993 .

[131]  M. Sugiura,et al.  The chloroplast genome. , 1992, Plant molecular biology.

[132]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .

[133]  Thomas J. Givnish,et al.  Internal leaf structure: a three-dimensional perspective. , 1986 .

[134]  Christopher B. Field,et al.  photosynthesis--nitrogen relationship in wild plants , 1986 .

[135]  James H. Everitt,et al.  Leaf reflectance-nitrogen-chlorophyll relations in buffelgrass , 1985 .

[136]  D. J. Segelstein The complex refractive index of water , 1981 .

[137]  G. Wagner,et al.  Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts , 1978 .

[138]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .