A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution

We report a high-quality chromosome-scale assembly and analysis of the carrot (Daucus carota) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions carotenoid accumulation (Y) in carrot taproot and is coexpressed with several isoprenoid biosynthetic genes. The primary mechanism regulating carotenoid accumulation in carrot taproot is not at the biosynthetic level. We hypothesize that DCAR_032551 regulates upstream photosystem development and functional processes, including photomorphogenesis and root de-etiolation.

[1]  Erhard Rahm,et al.  FUNC: a package for detecting significant associations between gene sets and ontological annotations , 2007, BMC Bioinformatics.

[2]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[3]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[4]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[5]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[6]  S. Downie,et al.  Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae , 2010 .

[7]  D. K. Willis,et al.  Transcript Abundance of Phytoene Synthase 1 and Phytoene Synthase 2 Is Associated with Natural Variation of Storage Root Carotenoid Pigmentation in Carrot , 2014 .

[8]  G. Weinstock,et al.  Creating a honey bee consensus gene set , 2007, Genome Biology.

[9]  Jian Wang,et al.  Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential , 2012, Nature Biotechnology.

[10]  Antonio Hermoso,et al.  PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants , 2012, Nucleic Acids Res..

[11]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[12]  M. Reacher,et al.  Epidemiology of vitamin A deficiency and xerophthalmia in at-risk populations. , 2012, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[13]  K. Broman,et al.  A Guide to QTL Mapping with R/qtl , 2009 .

[14]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[15]  R. Amasino,et al.  Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger–Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time , 2004, The Plant Cell Online.

[16]  M. Rodríguez-Concepcíon,et al.  Biosynthesis of carotenoids in carrot: an underground story comes to light. , 2013, Archives of biochemistry and biophysics.

[17]  Nicolas Altemose,et al.  Centromere reference models for human chromosomes X and Y satellite arrays , 2013, Genome research.

[18]  Anushya Muruganujan,et al.  PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees , 2012, Nucleic Acids Res..

[19]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[20]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[21]  B. Yandell,et al.  Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross , 2009, Theoretical and Applied Genetics.

[22]  J. Song,et al.  Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato , 2000, Theoretical and Applied Genetics.

[23]  F. Zhuang,et al.  The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves , 2014, Molecular Breeding.

[24]  Yeting Zhang,et al.  A genome triplication associated with early diversification of the core eudicots , 2012, Genome Biology.

[25]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[26]  Caroline Dean,et al.  Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control , 2002, Science.

[27]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[28]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[29]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[30]  D. Strack,et al.  Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. , 2002, The Plant journal : for cell and molecular biology.

[31]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[32]  L. Pizarro,et al.  Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots , 2012, Plant Molecular Biology.

[33]  P. Simon,et al.  Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping , 2007, Theoretical and Applied Genetics.

[34]  D. Spooner,et al.  Morphometrics of Daucus (Apiaceae): a counterpart to a phylogenomic study. , 2014, American journal of botany.

[35]  Yung-Jin Chang,et al.  Differential expression of three 1-deoxy-D-xylulose-5-phosphate synthase genes in rice , 2005, Biotechnology Letters.

[36]  Petr Novák,et al.  RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads , 2013, Bioinform..

[37]  Patrick Xuechun Zhao,et al.  PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool , 2013, BMC Bioinformatics.

[38]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[39]  Jiming Jiang,et al.  Comparative FISH mapping of Daucus species (Apiaceae family) , 2011, Chromosome Research.

[40]  D. Spooner,et al.  Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). , 2013, American journal of botany.

[41]  Gretchen Vogel,et al.  How Does a Single Somatic Cell Become a Whole Plant? , 2005, Science.

[42]  Robert J. Elshire,et al.  TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline , 2014, PloS one.

[43]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[44]  P. Simon,et al.  High Carotene Mass Carrot Population , 1989, HortScience.

[45]  L. Rieseberg,et al.  The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny , 2016, Scientific Reports.

[46]  L. Pollak,et al.  Plant Breeding for Human Nutritional Quality , 2009 .

[47]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[48]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[49]  New insights into domestication of carrot from root transcriptome analyses , 2014, BMC Genomics.

[50]  J. Welch,et al.  Male Sterility in the Carrot. , 1947, Science.

[51]  Anna Gambin,et al.  TIRfinder: A Web Tool for Mining Class II Transposons Carrying Terminal Inverted Repeats , 2013, Evolutionary Bioinformatics Online.

[52]  T. Mizuno,et al.  Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. , 2007, Plant & cell physiology.

[53]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[54]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[55]  P. Simon,et al.  Carotenes in typical and dark orange carrots , 1987 .

[56]  Joachim Messing,et al.  Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals , 2009, Proceedings of the National Academy of Sciences.

[57]  Yuan-Yeu Yau,et al.  Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.) , 2006, Molecular Genetics and Genomics.

[58]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. H. Gabelman,et al.  Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.) , 1979, Euphytica.

[60]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[61]  X. Deng,et al.  Beyond Repression of Photomorphogenesis: Role Switching of Cop/det/fus in Light Signaling This Review Comes from a Themed Issue on Cell Signalling and Gene Regulation Cop/det/fus: a Historical Remark , 2022 .

[62]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[63]  Stephen M. Mount,et al.  Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis , 2006, BMC Genomics.

[64]  P. León,et al.  Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. , 2011, Journal of experimental botany.

[65]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[66]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[67]  P. León,et al.  1-Deoxy-d-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants* , 2001, The Journal of Biological Chemistry.

[68]  R. Motohashi,et al.  The FOX hunting system: an alternative gain-of-function gene hunting technique. , 2006, The Plant journal : for cell and molecular biology.

[69]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[70]  S. Tanumihardjo,et al.  Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. , 2010 .

[71]  F. Steward GROWTH AND ORGANIZED DEVELOPMENT OF CULTURED CELLS. III. Interpretations of the Growth from Free Cell to Carrot Plan , 1958 .

[72]  P. Simon DOMESTICATION, HISTORICAL DEVELOPMENT, AND MODERN BREEDING OF CARROT , 2000 .

[73]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[74]  J. Garcia-Mas,et al.  The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps , 2014, Journal of experimental botany.

[75]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[76]  Yeisoo Yu,et al.  Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species , 2014, Nature Genetics.

[77]  M. Morgante,et al.  Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Simon,et al.  Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot , 2000, Theoretical and Applied Genetics.

[79]  J. Poulain,et al.  The genome of Theobroma cacao , 2011, Nature Genetics.

[80]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[81]  B. Mueller‐Roeber,et al.  Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity , 2010, Genome biology and evolution.

[82]  Jody Hey,et al.  The limits of selection during maize domestication , 1999, Nature.

[83]  M. Rodríguez-Concepcíon,et al.  Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. , 2000, The Plant journal : for cell and molecular biology.

[84]  Marta Matvienko,et al.  De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity , 2011, BMC Genomics.

[85]  Edward S. Buckler,et al.  TASSEL: software for association mapping of complex traits in diverse samples , 2007, Bioinform..

[86]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[87]  P. Simon,et al.  DcSto: carrot Stowaway-like elements are abundant, diverse, and polymorphic , 2013, Genetica.

[88]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Nemhauser,et al.  Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway , 2012, The arabidopsis book.

[90]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[91]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[92]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[93]  Nikos Darzentas,et al.  Circoletto: visualizing sequence similarity with Circos , 2010, Bioinform..

[94]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[95]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[96]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[97]  Zhou Du,et al.  agriGO: a GO analysis toolkit for the agricultural community , 2010, Nucleic Acids Res..

[98]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[99]  Jiming Jiang,et al.  Major cytogenetic landmarks and karyotype analysis inDaucus carota and other Apiaceae. , 2008, American journal of botany.

[100]  D. Altman,et al.  Multiple significance tests: the Bonferroni method , 1995, BMJ.

[101]  E. D. Earle,et al.  Nuclear DNA content of some important plant species , 2007, Plant Molecular Biology Reporter.

[102]  R. Edwards,et al.  Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets , 2011, PloS one.

[103]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[104]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[105]  B. Birren,et al.  Genome Project Standards in a New Era of Sequencing , 2009, Science.

[106]  Wei Tang,et al.  Draft genome of the kiwifruit Actinidia chinensis , 2013, Nature Communications.

[107]  X. Deng,et al.  The Photomorphogenic Repressors Cop1 and Det1: 20 Years Later , 2022 .

[108]  R. Berruyer,et al.  Expression of carotenoid biosynthesis genes during carrot root development , 2017 .

[109]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[110]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[111]  J. Casacuberta,et al.  Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. , 2002, Molecular biology and evolution.

[112]  H. V. van Leeuwen,et al.  An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce , 2013, G3: Genes, Genomes, Genetics.

[113]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[114]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[115]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[116]  Guy Baele,et al.  Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary , 2014, Genome research.

[117]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[118]  P. Simon,et al.  A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation , 2014, BMC Genomics.

[119]  W. F. Thompson,et al.  Rapid isolation of high molecular weight plant DNA. , 1980, Nucleic acids research.

[120]  Loren H. Rieseberg,et al.  De Novo Genome Assembly of the Economically Important Weed Horseweed Using Integrated Data from Multiple Sequencing Platforms1[C][W][OPEN] , 2014, Plant Physiology.

[121]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[122]  N. Wei,et al.  The Role of the COP/DET/FUS Genes in Light Control of Arabidopsis Seedling Development , 1996, Plant physiology.