Tuneable thermal properties of PTHF-based copolymers by incorporation of epoxide units

[1]  Cheng‐Pan Zhang,et al.  Phenyl(trifluoroethyl)iodonium-triflate-initiated ring-opening polymerization of tetrahydrofuran , 2021 .

[2]  Junfeng Li,et al.  Biomimetic Polyurethane 3D Scaffolds Based on Polytetrahydrofuran Glycol and Polyethylene Glycol for Soft Tissue Engineering , 2020, Polymers.

[3]  Gwendoline Delecourt,et al.  Synthesis of Double Hydrophilic Block Copolymers Poly(2-oxazoline-b-ethylenimine) in a Two-Step Procedure , 2020 .

[4]  N. Hur,et al.  Highly efficient ring‐opening polymerization of tetrahydrofuran by anhydrous ferric chloride , 2019, Journal of Applied Polymer Science.

[5]  D. Mohotti,et al.  The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review , 2018, Construction and Building Materials.

[6]  S. Nedellec,et al.  Curcumin/poly(2‐methyl‐2‐oxazoline‐b‐tetrahydrofuran‐b‐2‐methyl‐2‐oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del‐CFTR cell lines , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  Yakai Feng,et al.  Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. , 2017, Journal of materials chemistry. B.

[8]  V. Bennevault,et al.  Synthesis of tetraarm star block copolymer based on polytetrahydrofuran and poly(2-methyl-2-oxazoline) for gene delivery applications , 2017 .

[9]  A. R. Yuvaraj,et al.  Polyurethane types, synthesis and applications – a review , 2016 .

[10]  Y. Yagcı,et al.  Tandem Photoinduced Cationic Polymerization and CuAAC for Macromolecular Synthesis , 2015 .

[11]  M. Marzec,et al.  A review: fabrication of porous polyurethane scaffolds. , 2015, Materials science & engineering. C, Materials for biological applications.

[12]  P. Midoux,et al.  Poly(2-methyl-2-oxazoline)-b-poly(tetrahydrofuran)-b-poly(2-methyl-2-oxazoline) amphiphilic triblock copolymers: synthesis, physicochemical characterizations, and hydrosolubilizing properties. , 2015, Biomacromolecules.

[13]  S. Aoshima,et al.  Rational Design of Oxirane Monomers for Efficient Crossover Reactions in Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization with Vinyl Ethers , 2014 .

[14]  Yakai Feng,et al.  Biodegradable depsipeptide–PDO–PEG-based block copolymer micelles as nanocarriers for controlled release of doxorubicin , 2014 .

[15]  T. Naya,et al.  Viscoelastic and thermal decomposition behaviors of polytetrahydrofuran binder prepared using glycerin as a crosslinking modifier , 2012 .

[16]  Daniel Scherman,et al.  Synthesis and Evaluation of Amphiphilic Poly(tetrahydrofuran-b-ethylene oxide) Copolymers for DNA Delivery into Skeletal Muscle , 2008, Pharmaceutical Research.

[17]  E. Goethals,et al.  Star-Shaped Poly(tetrahydrofuran) with Reactive End Groups: Design, MALDI-TOF Study, and Solution Behavior , 2006 .

[18]  Krzysztof Pielichowski,et al.  Binary blends of polyethers with fatty acids: A thermal characterization of the phase transitions , 2003 .

[19]  K. Matyjaszewski Introduction to living polymeriz. Living and/or controlled polymerization , 1995 .

[20]  Bumjae Lee,et al.  Experimental Criteria for Living Polymerizations , 1992 .

[21]  M Szycher,et al.  Biostability of Polyurethane Elastomers: A Critical Review , 1988, Journal of biomaterials applications.

[22]  E. Goethals,et al.  Synthesis and reactions of polytetrahydrofuran with thiolanium end groups , 1988 .

[23]  P. Vondracek,et al.  Biostability of medical elastomers: a review. , 1984, Biomaterials.

[24]  K. Matyjaszewski,et al.  Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. THF-CH2Cl2 and THF-CH2Cl2/CH3NO2 systems , 1979 .

[25]  F. Tüdős,et al.  A new improved linear graphical method for determing copolymerization reactivity ratios , 1974 .

[26]  J. Pierson,et al.  Kinetic aspects of the copolymerization of tetrahydrofuran with alkylene oxides , 1971 .

[27]  J. Hammond,et al.  Cationic copolymerization of tetrahydrofuran with epoxides. I. Polymerization mechanism in the presence of a glycol , 1971 .

[28]  P. Dreyfuss,et al.  p‐Chlorophenyldiazonium hexafluorophosphate as a catalyst in the polymerization of tetrahydrofuran and other cyclic ethers , 1966 .

[29]  A. Ledwith,et al.  Gegenion effects in the cationic polymerization of tetrahydrofuran , 1965 .

[30]  A. Ledwith,et al.  Monomer-polymer equilibrium and ceiling temperature for tetrahydrofuran polymerization , 1965 .

[31]  P. Dreyfuss,et al.  A ‘living’ polymer after cationic initiation , 1965 .

[32]  B. Rozenberg,et al.  Copolymerization of tetrahydrofuran with α-oxides☆ , 1965 .

[33]  T. Saegusa,et al.  Copolymerization of cyclic ethers by alkylaluminum catalysts , 1964 .

[34]  L. Dickinson New elastomers derived from copolymers of tetrahydrofuran and propylene oxide , 1962 .

[35]  T. Saegusa,et al.  Copolymerization of 3,3‐bis(chloromethyl) oxacyclobutane and tetrahydrofuran , 1962 .

[36]  H. Meerwein,et al.  Die Polymerisation des Tetrahydrofurans , 1960 .

[37]  E. Muetterties,et al.  Chemistry of phosphorus fluorides , 1960 .

[38]  A. Adicoff,et al.  Linear Polyurethanes from Polyalkylene Ether Glycols , 1960 .

[39]  A. Tobolsky,et al.  A General Treatment of Equilibrium Polymerization , 1960 .

[40]  M. Szwarc |[lsquo]|Living|[rsquo]| Polymers , 1956 .

[41]  S. Ross,et al.  Linear method for determining monomer reactivity ratios in copolymerization , 1950 .

[42]  K. J. Ivin,et al.  Reversibility of the Propagation Reaction in Polymerization Processes and its Manifestation in the Phenomenon of a ‘Ceiling Temperature’ , 1948, Nature.