Bayesian quantile regression for longitudinal data models

In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[3]  Prediction of Future Observations in Polynomial Growth Curve Models. Part 1. , 1983 .

[4]  Jack C. Lee Prediction and estimation of growth curves with special covariance structures , 1988 .

[5]  John Dagpunar,et al.  An Easily Implemented Generalised Inverse Gaussian Generator , 1989 .

[6]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[7]  J. S. Williams,et al.  A class of linear spectral models and analyses for the study of longitudinal data. , 1989, Biometrics.

[8]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[9]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[10]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[11]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[12]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[13]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[14]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[15]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[16]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[17]  Jianxin Pan,et al.  Growth curve models and statistical diagnostics , 2002 .

[18]  Keming Yu,et al.  Quantile regression: applications and current research areas , 2003 .

[19]  R. Koenker Quantile regression for longitudinal data , 2004 .

[20]  Jack A. Taylor,et al.  Approximate Bayesian inference for quantiles , 2005 .

[21]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[22]  R. Koenker Quantile Regression: Name Index , 2005 .

[23]  Annie Qu,et al.  MAXIMUM LIKELIHOOD INFERENCE IN ROBUST LINEAR MIXED-EFFECTS MODELS USING MULTIVARIATE t DISTRIBUTIONS , 2007 .

[24]  M. Krnjajic,et al.  Bayesian Nonparametric Modeling in Quantile Regression , 2007 .

[25]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[26]  Andreas Karlsson,et al.  Nonlinear Quantile Regression Estimation of Longitudinal Data , 2007, Commun. Stat. Simul. Comput..

[27]  M. Bottai,et al.  Mixed-Effects Models for Conditional Quantiles with Longitudinal Data , 2009, The international journal of biostatistics.

[28]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[29]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[30]  T. Lancaster,et al.  Bayesian quantile regression methods , 2010 .

[31]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .