Bayesian quantile regression for longitudinal data models
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] D. Lindley,et al. Bayes Estimates for the Linear Model , 1972 .
[3] Prediction of Future Observations in Polynomial Growth Curve Models. Part 1. , 1983 .
[4] Jack C. Lee. Prediction and estimation of growth curves with special covariance structures , 1988 .
[5] John Dagpunar,et al. An Easily Implemented Generalised Inverse Gaussian Generator , 1989 .
[6] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[7] J. S. Williams,et al. A class of linear spectral models and analyses for the study of longitudinal data. , 1989, Biometrics.
[8] J. Robins,et al. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .
[9] Sin-Ho Jung. Quasi-Likelihood for Median Regression Models , 1996 .
[10] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[11] S. Lipsitz,et al. Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .
[12] R. Koenker,et al. Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .
[13] A. Gelfand,et al. Bayesian Semiparametric Median Regression Modeling , 2001 .
[14] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[15] Ana Ivelisse Avilés,et al. Linear Mixed Models for Longitudinal Data , 2001, Technometrics.
[16] Ying Nian Wu,et al. Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .
[17] Jianxin Pan,et al. Growth curve models and statistical diagnostics , 2002 .
[18] Keming Yu,et al. Quantile regression: applications and current research areas , 2003 .
[19] R. Koenker. Quantile regression for longitudinal data , 2004 .
[20] Jack A. Taylor,et al. Approximate Bayesian inference for quantiles , 2005 .
[21] T. Lancaster,et al. Bayesian Quantile Regression , 2005 .
[22] R. Koenker. Quantile Regression: Name Index , 2005 .
[23] Annie Qu,et al. MAXIMUM LIKELIHOOD INFERENCE IN ROBUST LINEAR MIXED-EFFECTS MODELS USING MULTIVARIATE t DISTRIBUTIONS , 2007 .
[24] M. Krnjajic,et al. Bayesian Nonparametric Modeling in Quantile Regression , 2007 .
[25] M. Bottai,et al. Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.
[26] Andreas Karlsson,et al. Nonlinear Quantile Regression Estimation of Longitudinal Data , 2007, Commun. Stat. Simul. Comput..
[27] M. Bottai,et al. Mixed-Effects Models for Conditional Quantiles with Longitudinal Data , 2009, The international journal of biostatistics.
[28] A. Kottas,et al. Bayesian Semiparametric Modelling in Quantile Regression , 2009 .
[29] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[30] T. Lancaster,et al. Bayesian quantile regression methods , 2010 .
[31] H. Kozumi,et al. Gibbs sampling methods for Bayesian quantile regression , 2011 .