Efficient inference in matrix-variate Gaussian models with \iid observation noise
暂无分享,去创建一个
Neil D. Lawrence | Joris M. Mooij | Oliver Stegle | Karsten M. Borgwardt | Christoph Lippert | Neil D. Lawrence | J. Mooij | K. Borgwardt | C. Lippert | O. Stegle
[1] H. Wackernagle,et al. Multivariate geostatistics: an introduction with applications , 1998 .
[2] Ying Liu,et al. FaST linear mixed models for genome-wide association studies , 2011, Nature Methods.
[3] N. Meinshausen,et al. Stability selection , 2008, 0809.2932.
[4] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[5] Jeff G. Schneider,et al. Learning Multiple Tasks with a Sparse Matrix-Normal Penalty , 2010, NIPS.
[6] P. Dutilleul. The mle algorithm for the matrix normal distribution , 1999 .
[7] John D. Storey,et al. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.
[8] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[9] K. Sachs,et al. Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.
[10] L. Kruglyak,et al. Gene–Environment Interaction in Yeast Gene Expression , 2008, PLoS biology.
[11] Robert Tibshirani,et al. Inference with transposable data: modelling the effects of row and column correlations , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[12] Yiannis Kourmpetis,et al. Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge , 2010, PloS one.
[13] Leopold Parts,et al. A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies , 2010, PLoS Comput. Biol..
[14] Neil D. Lawrence,et al. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..
[15] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[16] S. Leal. Genetics and Analysis of Quantitative Traits , 2001 .
[17] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[18] Bernhard Schölkopf,et al. Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery , 2010, UAI.
[19] Ka Yee Yeung,et al. Principal component analysis for clustering gene expression data , 2001, Bioinform..