New contiguity relation of the sixth Painlevé equation from a truncation
暂无分享,去创建一个
[1] R. Conte,et al. First degree birational transformations of the Painleve equations and their contiguity relations , 2001, nlin/0110028.
[2] P. R. Gordoa,et al. Mappings preserving locations of movable poles: II. The third and fifth Painlevé equations , 2001 .
[3] R. Conte. Sur les transformations de Schlesinger de la sixième équation de Painlevé , 2001 .
[4] R. Conte. Exact solutions of nonlinear partial differential equations by singularity analysis , 2000, nlin/0009024.
[5] M. Mazzocco. Rational solutions of the Painlevé VI equation , 2000, nlin/0007036.
[6] A. Hone,et al. On the discrete and continuous Miura chain associated with the sixth Painlevé equation , 1999, solv-int/9906006.
[7] H. Samtleben,et al. Schlesinger transformations for elliptic isomonodromic deformations , 1999, solv-int/9910010.
[8] P. R. Gordoa,et al. Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations , 1999, solv-int/9904023.
[9] P. Clarkson,et al. Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.
[10] M. Musette. Painlevé Analysis for Nonlinear Partial Differential Equations , 1999 .
[11] X. Zhou,et al. On the Algebro-Geometric Integration¶of the Schlesinger Equations , 1999 .
[12] Yasuhiro Ohta,et al. On Discrete Painlevé Equations Associated with the Lattice KdV Systems and the Painlevé VI Equation , 1998, solv-int/9812011.
[13] A. V. Kitaev,et al. On solutions of the Schlesinger equations in terms of theta-functions , 1998 .
[14] A. V. Kitaev,et al. On Solutions of the Schlesinger Equations in Terms of Θ-functions , 1998 .
[15] A. Hone. Non-autonomous He´non-Heiles systems , 1997, solv-int/9703005.
[16] A. Sakka,et al. Schlesinger transformations for Painlevé VI equation , 1995 .
[17] R. Conte,et al. The two-singular-manifold method: I. Modified Korteweg-de Vries and sine-Gordon equations , 1994 .
[18] A. Fokas,et al. From Continuous to Discrete Painlevé Equations , 1993 .
[19] Micheline Musette,et al. Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .
[20] Kazuo Okamoto. Studies on the Painlevé equations , 1986 .
[21] M. Tabor,et al. The Painlevé property for partial differential equations , 1983 .
[22] Athanassios S. Fokas,et al. On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .
[23] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[24] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[25] A. S. Pokas,et al. The transformation properties of the sixth Painlevé equation and one-parameter families of solutions , 1981 .
[26] R. Garnier. Sur un théorème de Schwarz , 1951 .
[27] L. Schlesinger. Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .
[28] B. Gambier,et al. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .
[29] Ludwig Schlesinger,et al. Vorlesungen über Lineare Differentialgleichungen , 1908 .
[30] P. Painlevé,et al. Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l'invitation de S. M. le roi de Suède et de Norwège , 1897 .
[31] P. Painlevé. Leçons sur la théorie analytique des équations différentielles : professées à Stockholm(1895) , 1897 .