New contiguity relation of the sixth Painlevé equation from a truncation

[1]  R. Conte,et al.  First degree birational transformations of the Painleve equations and their contiguity relations , 2001, nlin/0110028.

[2]  P. R. Gordoa,et al.  Mappings preserving locations of movable poles: II. The third and fifth Painlevé equations , 2001 .

[3]  R. Conte Sur les transformations de Schlesinger de la sixième équation de Painlevé , 2001 .

[4]  R. Conte Exact solutions of nonlinear partial differential equations by singularity analysis , 2000, nlin/0009024.

[5]  M. Mazzocco Rational solutions of the Painlevé VI equation , 2000, nlin/0007036.

[6]  A. Hone,et al.  On the discrete and continuous Miura chain associated with the sixth Painlevé equation , 1999, solv-int/9906006.

[7]  H. Samtleben,et al.  Schlesinger transformations for elliptic isomonodromic deformations , 1999, solv-int/9910010.

[8]  P. R. Gordoa,et al.  Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations , 1999, solv-int/9904023.

[9]  P. Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.

[10]  M. Musette Painlevé Analysis for Nonlinear Partial Differential Equations , 1999 .

[11]  X. Zhou,et al.  On the Algebro-Geometric Integration¶of the Schlesinger Equations , 1999 .

[12]  Yasuhiro Ohta,et al.  On Discrete Painlevé Equations Associated with the Lattice KdV Systems and the Painlevé VI Equation , 1998, solv-int/9812011.

[13]  A. V. Kitaev,et al.  On solutions of the Schlesinger equations in terms of theta-functions , 1998 .

[14]  A. V. Kitaev,et al.  On Solutions of the Schlesinger Equations in Terms of Θ-functions , 1998 .

[15]  A. Hone Non-autonomous He´non-Heiles systems , 1997, solv-int/9703005.

[16]  A. Sakka,et al.  Schlesinger transformations for Painlevé VI equation , 1995 .

[17]  R. Conte,et al.  The two-singular-manifold method: I. Modified Korteweg-de Vries and sine-Gordon equations , 1994 .

[18]  A. Fokas,et al.  From Continuous to Discrete Painlevé Equations , 1993 .

[19]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[20]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[21]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[22]  Athanassios S. Fokas,et al.  On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .

[23]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[24]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[25]  A. S. Pokas,et al.  The transformation properties of the sixth Painlevé equation and one-parameter families of solutions , 1981 .

[26]  R. Garnier Sur un théorème de Schwarz , 1951 .

[27]  L. Schlesinger Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .

[28]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[29]  Ludwig Schlesinger,et al.  Vorlesungen über Lineare Differentialgleichungen , 1908 .

[30]  P. Painlevé,et al.  Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l'invitation de S. M. le roi de Suède et de Norwège , 1897 .

[31]  P. Painlevé Leçons sur la théorie analytique des équations différentielles : professées à Stockholm(1895) , 1897 .