BIARCS, GLOBAL RADIUS OF CURVATURE, AND THE COMPUTATION OF IDEAL KNOT SHAPES
暂无分享,去创建一个
John H. Maddocks | J. Maddocks | M. Carlen | Ben Laurie | J. Smutny | M. Carlen | J. Smutny | B. Laurie
[1] P. Pierański,et al. Tight open knots , 2001, physics/0103016.
[2] F. Schuricht,et al. Global curvature for rectifiable loops , 2003 .
[3] F. B. Fuller. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[4] Jens Schönherr,et al. Smooth biarc curves , 1993, Comput. Aided Des..
[5] Ying‐Qing Wu. Energy and Length of Knots , 1996 .
[6] O. Gonzalez,et al. Global curvature and self-contact of nonlinearly elastic curves and rods , 2002 .
[7] F. Schuricht,et al. Characterization of ideal knots , 2004 .
[8] Oscar Gonzalez,et al. Curves, circles, and spheres , 2002 .
[9] K. M. Bolton. Biarc curves , 1975, Comput. Aided Des..
[10] J. Dubochet,et al. Geometry and physics of knots , 1996, Nature.
[11] Thickness Formula and C^1-Compactness for C^{1,1} Riemannian Submanifolds , 2002, math/0204050.
[12] Antonio Trovato,et al. Optimal shapes of compact strings , 2000, Nature.
[13] R. R. Martin,et al. Differential geometry applied to curve and surface design , 1988 .
[14] J. Smutny. Global radii of curvature, and the biarc approximation of space curves , 2004 .
[15] T. J. Sharrock. Biarcs in three dimensions , 1987 .
[16] Eric J. Rawdon,et al. Can Computers Discover Ideal Knots? , 2003, Exp. Math..
[17] Jason H. Cantarella,et al. On the minimum ropelength of knots and links , 2001, math/0103224.
[18] Ben Laurie. ANNEALING IDEAL KNOTS AND LINKS: METHODS AND PITFALLS , 1998 .
[19] Ideal trefoil knot. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Yuanan Diao,et al. Quadrisecants give new lower bounds for the ropelength of a knot , 2004, math/0408026.
[21] Eric J. Rawdon,et al. APPROXIMATING SMOOTH THICKNESS , 2000 .
[22] Eric J. Rawdon,et al. Approximating the Thickness of a Knot , 1998 .
[23] Eric J. Rawdon,et al. Thickness of knots , 1999 .
[24] P. Pierański,et al. IN SEARCH OF IDEAL KNOTS , 1998 .
[25] R. de la Llave,et al. EXISTENCE OF IDEAL KNOTS , 2003 .
[26] Mathematics: Best packing in proteins and DNA , 2000, Nature.
[27] J. Maddocks,et al. Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[28] O. C. Durumeric. Local structure of ideal shapes of knots , 2002 .