BIARCS, GLOBAL RADIUS OF CURVATURE, AND THE COMPUTATION OF IDEAL KNOT SHAPES

We combine the global radius of curvature characterisation of knot thickness, the biarc discretisation of space curves, and simulated annealing code to compute approximations to the ideal shapes of the trefoil and figure-eight knots. The computations contain no discretisation error, and give rigorous lower bounds on thickness of the true ideal shapes. The introduction of a precise definition of a contact set for an approximately ideal shape allows us to resolve previously unobserved features. For example, in our approximations of both the ideal trefoil and figure-eight knots, local curvature is within a rather small tolerance of being active, i.e. achieving thickness, at several points along the knot.

[1]  P. Pierański,et al.  Tight open knots , 2001, physics/0103016.

[2]  F. Schuricht,et al.  Global curvature for rectifiable loops , 2003 .

[3]  F. B. Fuller Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Jens Schönherr,et al.  Smooth biarc curves , 1993, Comput. Aided Des..

[5]  Ying‐Qing Wu Energy and Length of Knots , 1996 .

[6]  O. Gonzalez,et al.  Global curvature and self-contact of nonlinearly elastic curves and rods , 2002 .

[7]  F. Schuricht,et al.  Characterization of ideal knots , 2004 .

[8]  Oscar Gonzalez,et al.  Curves, circles, and spheres , 2002 .

[9]  K. M. Bolton Biarc curves , 1975, Comput. Aided Des..

[10]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[11]  Thickness Formula and C^1-Compactness for C^{1,1} Riemannian Submanifolds , 2002, math/0204050.

[12]  Antonio Trovato,et al.  Optimal shapes of compact strings , 2000, Nature.

[13]  R. R. Martin,et al.  Differential geometry applied to curve and surface design , 1988 .

[14]  J. Smutny Global radii of curvature, and the biarc approximation of space curves , 2004 .

[15]  T. J. Sharrock Biarcs in three dimensions , 1987 .

[16]  Eric J. Rawdon,et al.  Can Computers Discover Ideal Knots? , 2003, Exp. Math..

[17]  Jason H. Cantarella,et al.  On the minimum ropelength of knots and links , 2001, math/0103224.

[18]  Ben Laurie ANNEALING IDEAL KNOTS AND LINKS: METHODS AND PITFALLS , 1998 .

[19]  Ideal trefoil knot. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Yuanan Diao,et al.  Quadrisecants give new lower bounds for the ropelength of a knot , 2004, math/0408026.

[21]  Eric J. Rawdon,et al.  APPROXIMATING SMOOTH THICKNESS , 2000 .

[22]  Eric J. Rawdon,et al.  Approximating the Thickness of a Knot , 1998 .

[23]  Eric J. Rawdon,et al.  Thickness of knots , 1999 .

[24]  P. Pierański,et al.  IN SEARCH OF IDEAL KNOTS , 1998 .

[25]  R. de la Llave,et al.  EXISTENCE OF IDEAL KNOTS , 2003 .

[26]  Mathematics: Best packing in proteins and DNA , 2000, Nature.

[27]  J. Maddocks,et al.  Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  O. C. Durumeric Local structure of ideal shapes of knots , 2002 .