Extremely Pure Mg2FeH6 as a Negative Electrode for Lithium Batteries
暂无分享,去创建一个
Sergio Brutti | Stefania Panero | Priscilla Reale | Laura Silvestri | Oriele Palumbo | Francesco Trequattrini | Annalisa Paolone | Luca Farina | F. Trequattrini | L. Farina | P. Reale | S. Panero | S. Brutti | A. Paolone | O. Palumbo | L. Silvestri
[1] S. Brutti,et al. Incorporation of Lithium by MgH2: An Ab Initio Study , 2013 .
[2] T. Ruskov,et al. Neutron Powder Diffraction, x-ray absorption and Mössbauer spectroscopy on Mg2FeH6 , 2015 .
[3] P. Reale,et al. Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .
[4] J. Huot,et al. In-situ neutron diffraction investigation of Mg2FeH6 dehydrogenation , 2017 .
[5] R. Zidan,et al. Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron – sodium alanate) for concentrating solar power plants , 2017 .
[6] J. Tarascon,et al. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .
[7] Yong Du,et al. Thermodynamic optimization of the Li–Mg and Al–Li–Mg systems , 2011 .
[8] P. Reale,et al. Origin of the Voltage Hysteresis of MgH2 Electrodes in Lithium Batteries , 2015 .
[9] F. Trequattrini,et al. An extensive study of the Mg Fe H material obtained by reactive ball milling of MgH 2 and Fe in a molar ratio 3:1 , 2017 .
[10] C. J. Webb,et al. Mg-based compounds for hydrogen and energy storage , 2016 .
[11] E. Akiba,et al. Synthesis of Mg2FeD6 under low pressure conditions for Mg2FeH6 hydrogen storage studies , 2017 .
[12] E. Peled,et al. Review—SEI: Past, Present and Future , 2017 .
[13] Lei Xie,et al. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6 , 2010, Nanotechnology.
[14] C. Kiminami,et al. 2Mg–Fe alloys processed by hot-extrusion: Influence of processing temperature and the presence of MgO and MgH2 on hydrogenation sorption properties , 2011 .
[15] Jie Shao,et al. Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core–shell nanostructure , 2015 .
[16] D. Song,et al. A Critical Review of Mg-Based Hydrogen Storage Materials Processed by Equal Channel Angular Pressing , 2017 .
[17] A. F. Williams,et al. Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH64- anions , 1984 .
[18] J. Tarascon,et al. Metal hydrides for lithium-ion batteries. , 2008, Nature materials.
[19] J. Jumas,et al. Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .
[20] F. Trequattrini,et al. Study of the hydrogenation/dehydrogenation process in the Mg–Ni–C–Al system , 2015 .
[21] B. Bogdanovic,et al. Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage , 2002 .
[22] J. Huot,et al. Investigation of Effect of Milling Atmosphere and Starting Composition on Mg2FeH6 Formation , 2014 .
[23] F. Trequattrini,et al. Temperature Dependence of the Elastic Modulus of (Ni0.6Nb0.4)1−xZrx Membranes: Effects of Thermal Treatments and Hydrogenation , 2015 .
[24] M. Felderhoff,et al. Development of a heat storage demonstration unit on the basis of Mg2FeH6 as heat storage material and molten salt as heat transfer media , 2017 .
[25] M. Polański,et al. Mg2FeH6 Synthesis Efficiency Map , 2018 .
[26] L. Farina,et al. Reactivity of Sodium Alanates in Lithium Batteries , 2015 .
[27] M. Felderhoff,et al. Demonstration of Mg2FeH6 as heat storage material at temperatures up to 550 °C , 2016 .
[28] S. Takagi,et al. Thermodynamical Stability of Complex Transition Metal Hydrides M2FeH6 , 2013 .