Integrated modelling of tokamak core and edge plasma turbulence

The accurate prediction of turbulent transport and its effect on tokamak operation is vital for the performance and development of operational scenarios for present and future fusion devices. For problems of this complexity, a common approach is integrated modelling where multiple, well-benchmarked codes are coupled together to form a code that covers a larger domain and range of physics than each of the constituents. The main goal of this work is to develop such a code that integrates core and edge physics for long-time simulation of the tokamak plasma. Three questions are addressed that contribute to the ultimate end goal of this core/edge coupling, each of which spans a chapter. Firstly, the choice of model for edge and core must be fluid for the time scales of interest, but the validity of a common further simplification to the physics models (i.e. the drift-reduction) is explored for regions of interest within a tokamak. Secondly, maintaining a high computational efficiency in such integrated frameworks is challenging, and increasing this while maintaining accurate simulations is important. The use of sub-grid dissipation models is ubiquitous and useful, so the accuracy of such models is explored. Thirdly, the challenging geometry of a tokamak necessitates the use of a field-aligned coordinate system in the edge plasma, which has limitations. A new coordinate system is developed and tested to improve upon the standard system and remove some of its constraints. Finally, the investigation of these topics culminates in the coupling of an edge and core code (BOUT++ and CENTORI, respectively) to produce a novel, three-dimensional, two-fluid plasma turbulence simulation.

[1]  N. T. Gladd,et al.  Microtearing modes and anomalous transport in tokamaks , 1980 .

[2]  M. Greenwald Density limits in toroidal plasmas , 2002 .

[3]  M. Romanelli,et al.  On the validity of drift-reduced fluid models for tokamak plasma simulation , 2015, 1506.03247.

[4]  Hong Zhang,et al.  FACETS – A Framework for Parallel Coupling of Fusion Components , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.

[5]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[6]  M. Raghavachari,et al.  Turbulence and Stochastic Processes: Kobnogorov's Ideas 50 Years On , 1993 .

[7]  Y. Horibe,et al.  Deuterium content as a parameter of water mass in the ocean , 1968 .

[8]  P. Diamond,et al.  Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead , 2011 .

[9]  W. D. D'haeseleer,et al.  Flux coordinates and magnetic field structure : a guide to a fundamental tool of plasma theory , 1991 .

[10]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[11]  George D. Byrne,et al.  PVODE, an ODE Solver for Parallel Computers , 1999, Int. J. High Perform. Comput. Appl..

[12]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[13]  Gregory W. Hammett,et al.  Eddy viscosity and hyperviscosity in spectral simulations of 2D drift wave turbulence , 1997 .

[14]  P. Gibbon,et al.  Introduction to Plasma Physics , 2017, 2007.04783.

[15]  Jet Efda Contributors,et al.  High resolution Thomson scattering for Joint European Torus (JET) , 2004 .

[16]  G. Fishpool,et al.  Characterization of 3D filament dynamics in a MAST SOL flux tube geometry , 2013, 1307.5234.

[17]  P. Diamond,et al.  Recent progress towards a physics-based understanding of the H-mode transition , 2016 .

[18]  J. Hugill REVIEW ARTICLE: Edge turbulence in tokamaks and the L-mode to H-mode transition , 2000 .

[19]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[20]  Scott Self-sustained collisional drift-wave turbulence in a sheared magnetic field. , 1990, Physical review letters.

[21]  L. Horton,et al.  SOLPS modelling of ASDEX upgrade H-mode plasma , 2006 .

[22]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[23]  V. Naulin,et al.  Three dimensional simulations of plasma filaments in the scrape off layer: A comparison with models of reduced dimensionality , 2014, 1410.2137.

[24]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[25]  George H. Miley,et al.  Principles of Fusion Energy: An Introduction to Fusion Energy for Students of Science and Engineering , 2000 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  B. Braams Radiative Divertor Modelling for ITER and TPX , 1996 .

[28]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[29]  Hiroaki Ohtani,et al.  Development of Multi-hierarchy Simulation Model for Studies of Magnetic Reconnection , 2008 .

[30]  T. A. Zang,et al.  Toward the large-eddy simulation of compressible turbulent flows , 1990, Journal of Fluid Mechanics.

[31]  Iu. L. Klimontovich,et al.  The statistical theory of non-equilibrium processes in a plasma , 1967 .

[32]  L. Torrisi Ion Acceleration and D-D Nuclear Fusion in Laser-Generated Plasma from Advanced Deuterated Polyethylene , 2014, Molecules.

[33]  A. Hasegawa,et al.  A collisional drift wave description of plasma edge turbulence , 1984 .

[34]  A. S. Kukushkin,et al.  Finalizing the ITER divertor design: The key role of SOLPS modeling , 2011 .

[35]  Yican Wu,et al.  Conceptual design and testing strategy of a dual functional lithium–lead test blanket module in ITER and EAST , 2007 .

[36]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[37]  L. Horton,et al.  Simulation of ASDEX Upgrade Ohmic plasmas for SOLPS code validation , 2009 .

[38]  Savage,et al.  Multichannel scattering studies of the spectra and spatial distribution of tokamak microturbulence. , 1985, Physical review letters.

[39]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[40]  B. Scott Computation of turbulence in magnetically confined plasmas , 2006 .

[42]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[43]  A. Vlasov,et al.  Many-particle theory and its application to plasma , 1961 .

[44]  D. Coster,et al.  Extensions to the SOLPS edge plasma simulation code to include additional surface interaction posibilities , 2006 .

[45]  Benjamin A. Carreras,et al.  Progress in anomalous transport research in toroidal magnetic confinement devices , 1997 .

[46]  A. Mikhailovskii,et al.  Transport equations and gradient instabilities in a high pressure collisional plasma , 1971 .

[47]  Hiroaki Ohtani,et al.  Development of multi-hierarchy simulation model with non-uniform space grids for collisionless driven reconnection , 2013 .

[48]  Steven A. Orszag,et al.  Large Eddy Simulation of Complex Engineering and Geophysical Flows , 2010 .

[49]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[50]  Robert J. Goldston,et al.  Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks , 2011 .

[51]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[52]  J. Hein,et al.  A Performance Comparison of HPCx and HECToR , 2008 .

[53]  K. J. Gibson,et al.  Characterisation of detached plasmas on the MAST Tokamak , 2011 .

[54]  D. Reiter,et al.  The EIRENE and B2-EIRENE Codes , 2005 .

[55]  F. Jenko,et al.  Gyrokinetic Large Eddy Simulations , 2011, 1104.2422.

[56]  Daniel Clery ITER's $12 Billion Gamble , 2006, Science.

[57]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[58]  J. Meyer-ter-Vehn Fast ignition of ICF targets: an overview , 2001 .

[59]  B. J. MacGowan,et al.  The national ignition facility: path to ignition in the laboratory , 2007 .

[60]  L. C. Woods Physics of plasmas , 2003 .

[61]  J. Madsen,et al.  Verification of BOUT++ by the method of manufactured solutions , 2016, 1602.06747.

[62]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[63]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[64]  M. Umansky,et al.  Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device , 2010, 1004.4674.

[65]  Philippe Ghendrih,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2001 .

[66]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[67]  D. P. Coster,et al.  Detachment physics in SOLPS simulations , 2011 .

[68]  P. Snyder,et al.  Simulation of edge localized modes using BOUT++ , 2010, 1008.4554.

[69]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[70]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[71]  P. Snyder,et al.  Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes. , 2010, Physical review letters.

[72]  G. Matthews,et al.  R&D on tungsten plasma facing components for the JET ITER-like wall project , 2007 .

[73]  Vergassola,et al.  Inverse energy cascade in two-dimensional turbulence: deviations from gaussian behavior , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[74]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[75]  S. Camargo,et al.  Resistive drift‐wave turbulence , 1995 .

[76]  P. Liewer Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport , 1985 .

[77]  K. G. McClements,et al.  CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code , 2011, Comput. Phys. Commun..

[78]  X. Xu,et al.  Five-field simulations of peeling-ballooning modes using BOUT++ code , 2013 .

[79]  K. Chung,et al.  Simultaneous measurement of viscosity and flow velocity in Texas Experimental Tokamak-Upgrade (TEXT-U) edge plasmas by using a Visco-Mach probe , 1997 .

[80]  T. Xia,et al.  Six-field two-fluid simulations of peeling–ballooning modes using BOUT++ , 2013 .

[81]  Albert Einstein,et al.  Does the Inertia of a Body Depend upon Its Energy-content? , 2001 .

[82]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[83]  Federico David Halpern,et al.  Boundary conditions for plasma fluid models at the magnetic presheath entrance , 2012 .

[84]  David J. C. MacKay Sustainable Energy - Without the Hot Air , 2008 .

[85]  H. R. Wilson,et al.  REVIEW ARTICLE: A review of theories of the L-H transition , 2000 .

[86]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[87]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[88]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[89]  Drift Wave versus Interchange Turbulence in Tokamak Geometry: Linear versus Nonlinear Mode Structure , 2002, physics/0207126.

[90]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[91]  Peter J. Catto,et al.  Drift-ordered fluid equations for modelling collisional edge plasma , 2004 .

[92]  Williams,et al.  Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. , 1996, Physical review letters.

[93]  P. Stangeby,et al.  Experimental divertor physics , 1997 .

[94]  H R Wilson,et al.  Survey of theories of anomalous transport , 1994 .

[95]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[96]  A. Yoshizawa,et al.  Turbulence theories and modelling of fluids and plasmas , 2001 .

[97]  A. Taroni,et al.  Models and Numerics in the Multi-Fluid 2-D Edge Plasma Code EDGE2D/U , 1994 .

[98]  K. McClements,et al.  Global two-fluid simulations of geodesic acoustic modes in strongly shaped tight aspect ratio tokamak plasmas , 2013 .

[99]  M. Vergote,et al.  Direct evidence of eddy breaking and tilting by edge sheared flows observed in the TEXTOR tokamak , 2012 .

[100]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .