Technologies for Low-Noise Amplifiers in the Millimeter-Wave Regime

This chapter expands the research contextualization elaborated in previous chapters, towards the millimeter-wave device technologies. It is divided into two parts. The first part conducts research into solid-state device technologies that meet the requirements for millimeter-wave LNA applications, namely HEMT, CMOS/BiCMOS and HBT devices. The second part focuses on transistor modeling in different technologies: even though this might appear to be a separate topic, modeling is closely related to transistor technology.

[1]  P.J. Zampardi,et al.  A comparison of linear handset power amplifiers in different bipolar technologies , 2004, IEEE Journal of Solid-State Circuits.

[2]  Mehmet Kaynak,et al.  A 0.8 THz $f_{\rm MAX}$ SiGe HBT Operating at 4.3 K , 2014, IEEE Electron Device Letters.

[3]  C. Hannachi,et al.  Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology , 2017 .

[4]  W. Deal,et al.  A 670 GHz Low Noise Amplifier with <10 dB Packaged Noise Figure , 2016, IEEE Microwave and Wireless Components Letters.

[5]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[6]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[7]  Donald A. Neamen,et al.  Microelectronics Circuit Analysis and Design , 2006 .

[8]  V. Radisic,et al.  Fabrication of InP HEMT devices with extremely high Fmax , 2008, 2008 20th International Conference on Indium Phosphide and Related Materials.

[9]  Guofu Niu,et al.  Noise in SiGe HBT RF Technology: Physics, Modeling, and Circuit Implications , 2005, Proceedings of the IEEE.

[10]  Jongsoo Lee,et al.  Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[11]  Alvin J. Joseph,et al.  Noise-gain tradeoff in RF SiGe HBTs , 2002 .

[12]  Nutapong Somjit,et al.  Microwave and Millimetre-Wave Design for Wireless Communications , 2016 .

[13]  Gholamreza Nikandish,et al.  A Design Procedure for High-Efficiency and Compact-Size 5–10-W MMIC Power Amplifiers in GaAs pHEMT Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[14]  John D. Cressler,et al.  Design of Radiation-Hardened RF Low-Noise Amplifiers Using Inverse-Mode SiGe HBTs , 2014, IEEE Transactions on Nuclear Science.

[15]  K. Doverspike,et al.  High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates , 1999, IEEE Electron Device Letters.

[16]  Xiang Yi,et al.  An 88.5–110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications , 2016, IEEE Microwave and Wireless Components Letters.

[17]  Alain Chantre,et al.  0.13 $\mu$ m SiGe BiCMOS Technology Fully Dedicated to mm-Wave Applications , 2009, IEEE Journal of Solid-State Circuits.

[18]  F.M. Ghannouchi,et al.  An Augmented Small-Signal HBT Model With Its Analytical Based Parameter Extraction Technique , 2008, IEEE Transactions on Electron Devices.

[19]  N. Klein,et al.  AlGaN/GaN High Electron Mobility Transistor Structures: Self-Heating Effect and Performance Degradation , 2008, IEEE Transactions on Device and Materials Reliability.

[20]  K. Schmalz,et al.  A 245 GHz LNA in SiGe Technology , 2012, IEEE Microwave and Wireless Components Letters.

[21]  Dae-Hyun Kim,et al.  30-nm InAs PHEMTs With $f_{T} = \hbox{644}\ \hbox{GHz}$ and $f_{\max} = \hbox{681}\ \hbox{GHz}$ , 2010, IEEE Electron Device Letters.

[22]  M. Micovic,et al.  The state-of-the-art of GaAs and InP power devices and amplifiers , 2001 .

[23]  P. Asbeck,et al.  High-speed, High-efficiency millimeter-wave transmitters at 45 GHz in CMOS , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[24]  Tadao Nagatsuma,et al.  Handbook of Terahertz Technologies : Devices and Applications , 2015 .

[25]  Wei Zhou,et al.  An Improved Small-Signal Model for SiGe HBT Under OFF-State, Derived From Distributed Network and Corresponding Model Parameter Extraction , 2015, IEEE Transactions on Microwave Theory and Techniques.

[26]  Parisa Momen Roodaki,et al.  A survey of millimeter-wave technologies , 2011, 2011 International Conference on Electrical and Control Engineering.

[27]  Thomas H. Lee Terahertz CMOS integrated circuits , 2014, 2014 IEEE International Symposium on Radio-Frequency Integration Technology.

[28]  Andrei Grebennikov,et al.  Broadband RF and Microwave Amplifiers , 2015 .

[29]  A cryogenic SiGe low noise amplifier developed for radio astronomy , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[30]  J. Palmour,et al.  Applications of SiC MESFETs and GaN HEMTs in power amplifier design , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[31]  Gabriel M. Rebeiz,et al.  Millimeter-Wave and THz Circuits in 45-nm SOI CMOS , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[32]  L. Samoska An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime , 2011, IEEE Transactions on Terahertz Science and Technology.

[33]  P.-O. Brandt,et al.  Silicon-germanium BiCMOS HBT technology for wireless power amplifier applications , 2004, IEEE Journal of Solid-State Circuits.