On Tail Index Estimation and Financial Risk Management Implications

Estimation bias is a critical issue when drawing inferences about the tails of the return distribution of risky assets. Risk management applications which rely on methods of extreme value theory must consider the statistical properties of the tail index estimator used; see for example recent simulation studies by Gomes and Oliveira (2001), Matthys and Beirlant (2000), and Wagner and Marsh (2000). The present contribution outlines potential effects of bias on quantile estimation thereby considering error sensitivities within the widespread Value-at-Riskapproach. The results show that particularly inference far out in the distribution tails is sensitive to bias. The paper further gives an overview of recent literature documenting small sample bias in tail index estimation and points out some new approaches aiming at its reduction.

[1]  Paul Embrechts,et al.  Extremes and Integrated Risk Management , 2000 .

[2]  P. Embrechts,et al.  Risk management and quantile estimation , 1998 .

[3]  VaR - ein Maß für das extreme Risiko , 1998 .

[4]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[5]  R. Huisman,et al.  Tail-Index Estimates in Small Samples , 2001 .

[6]  Estimation of Value at Risk by Extreme Value Methods , 2000 .

[7]  Adrian Pagan,et al.  Estimating the Density Tail Index for Financial Time Series , 1997, Review of Economics and Statistics.

[8]  Jón Dańıelsson,et al.  Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .

[9]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[10]  Thomas Ridder Basics of Statistical VaR-Estimation , 1998 .

[11]  Wann beginnt die Krise? — Ein Blick auf Finanzmarktrenditen , 2003 .

[12]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[13]  Claudia Klüppelberg,et al.  Risk Management with Extreme Value Theory , 2002 .

[14]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[15]  J. Teugels,et al.  Practical Analysis of Extreme Values , 1996 .

[16]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[17]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[18]  Walter Krämer,et al.  Stochastic properties of german stock returns , 1996 .

[19]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[20]  T. Lux The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange , 1998 .

[21]  Ronald Huisman,et al.  VaR-x: fat tails in financial risk management , 1998 .

[22]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[23]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[24]  Philippe Jorion Value at risk: the new benchmark for controlling market risk , 1996 .

[25]  Niklas Wagner,et al.  On Adaptive Tail Index Estimation for Financial Return Models , 2002 .

[26]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .