Haptic Actuation Plate for Multi-Layered In-Vehicle Control Panel

High-fidelity localized feedback has the potential of providing new and unique levels of interaction with a given device. Achieving this in a cost-effective reproducible manner has been a challenge in modern technology. Past experiments have shown that by using the principles of constructive wave interference introduced by time offsets it is possible to achieve a position of increased vibration displacement at any given location. As new interface form factors increasingly incorporate curved surfaces, we now show that these same techniques can successfully be applied and mechanically coupled with a universal actuation plate.

[1]  V. Hayward,et al.  Localized Tactile Feedback on a Transparent Surface through Time-Reversal Wave Focusing , 2015, IEEE Transactions on Haptics.

[2]  Anatole Lécuyer,et al.  The Use of Haptic and Tactile Information in the Car to Improve Driving Safety: A Review of Current Technologies , 2018, Front. ICT.

[3]  Jürgen Steimle,et al.  Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics , 2015, UIST.

[4]  F. A. Geldard,et al.  The Cutaneous "Rabbit": A Perceptual Illusion , 1972, Science.

[5]  Susumu Tachi,et al.  Design of electrotactile stimulation to represent distribution of force vectors , 2010, 2010 IEEE Haptics Symposium.

[6]  Christian A. Müller,et al.  Multimodal Input in the Car, Today and Tomorrow , 2011, IEEE MultiMedia.

[7]  Vincent Hayward,et al.  Tradeoffs in the Application of Time-Reversed Acoustics to Tactile Stimulation , 2012, EuroHaptics.

[8]  Grigori Evreinov,et al.  Reducing driver distraction by improving secondary task performance through multimodal touchscreen interaction , 2019, SN Applied Sciences.

[9]  Shumin Zhai,et al.  Active Edge: Designing Squeeze Gestures for the Google Pixel 2 , 2019, CHI.

[10]  R. Raisamo,et al.  Information Kiosks for All : Issues of Tactile Access , 2002 .

[11]  Masaya Hirashima,et al.  The “Cutaneous Rabbit” Hopping out of the Body , 2010, The Journal of Neuroscience.

[12]  C. Giraud-Audine,et al.  Generating controlled localized stimulations on haptic displays by modal superimposition , 2019, Journal of Sound and Vibration.

[13]  Roope Raisamo,et al.  Generating Localized Haptic Feedback over a Spherical Surface , 2021, VISIGRAPP.

[14]  Seungmoon Choi,et al.  Edge flows: Improving information transmission in mobile devices using two-dimensional vibrotactile flows , 2015, 2015 IEEE World Haptics Conference (WHC).

[15]  Jan O. Borchers,et al.  MudPad: tactile feedback for touch surfaces , 2011, CHI EA '11.

[16]  R. Letty,et al.  Amplified Piezoelectric Actuators: Static & Dynamic Applications , 2007 .

[17]  Jan O. Borchers,et al.  MudPad: localized tactile feedback on touch surfaces , 2010, UIST '10.

[18]  Lynette A. Jones,et al.  Shape Localization and Recognition Using a Magnetorheological-Fluid Haptic Display , 2018, IEEE Transactions on Haptics.

[19]  Koichiro Deguchi,et al.  Lateral-force-based 2.5-dimensional tactile display for touch screen , 2012, 2012 IEEE Haptics Symposium (HAPTICS).

[20]  Geehyuk Lee,et al.  PinPad: Touchpad Interaction with Fast and High-Resolution Tactile Output , 2017, CHI.

[21]  Allison M. Okamura,et al.  Haptics: The Present and Future of Artificial Touch Sensation , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[22]  Muniyandi Manivannan,et al.  Power Law Based “Out of Body” Tactile Funneling for Mobile Haptics , 2019, IEEE Transactions on Haptics.

[23]  Patrick Haggard,et al.  The cutaneous rabbit revisited. , 2006, Journal of experimental psychology. Human perception and performance.

[24]  David Lindlbauer,et al.  GelTouch: Localized Tactile Feedback Through Thin, Programmable Gel , 2015, UIST.

[25]  David Lindlbauer,et al.  TacTiles: Dual-Mode Low-Power Electromagnetic Actuators for Rendering Continuous Contact and Spatial Haptic Patterns in VR , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[26]  Michael Feld,et al.  Combining Speech, Gaze, and Micro-gestures for the Multimodal Control of In-Car Functions , 2016, 2016 12th International Conference on Intelligent Environments (IE).

[27]  Matthew S. Reynolds,et al.  Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction , 2017, CHI.

[28]  Roope Raisamo,et al.  Gel-based Haptic Mediator for High-Definition Tactile Communication , 2019, UIST.

[29]  A. Pietrikova,et al.  Capacitive touch sensor , 2018, Microelectronics International.

[30]  Liu Jinquan,et al.  Automotive Display Trend and Tianma’s Directions , 2019, 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[31]  Seongcheol Mun,et al.  A Light-Driven Vibrotactile Actuator with a Polymer Bimorph Film for Localized Haptic Rendering. , 2021, ACS applied materials & interfaces.

[32]  Lori L. Holt,et al.  Incidental Categorization of Vibrotactile Stimuli , 2020, IEEE Transactions on Haptics.

[33]  H. Fujimoto,et al.  TouchLens: touch enhancing tool , 2004, IEEE Conference on Robotics and Automation, 2004. TExCRA Technical Exhibition Based..

[34]  Mauro Cordella,et al.  Durability of smartphones: A technical analysis of reliability and repairability aspects , 2020, Journal of cleaner production.

[35]  Seongcheol Kim,et al.  Consumer valuation of the wearables: The case of smartwatches , 2016, Comput. Hum. Behav..

[36]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[37]  Chenye Yang,et al.  A Review of Smart Materials in Tactile Actuators for Information Delivery , 2017, 1708.07077.

[38]  Grigori Evreinov,et al.  Generating Virtual Tactile Exciter for HD Haptics : A Tectonic Actuators’ Case Study , 2019, 2019 IEEE SENSORS.