Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  F. Simons,et al.  Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.

[3]  H. Landau The eigenvalue behavior of certain convolution equations , 1965 .

[4]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[5]  K. Lewis,et al.  Local spectral variability and the origin of the Martian crustal magnetic field , 2012 .

[6]  Thomas P. Bronez,et al.  Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  V. Michel Tomography: Problems and Multiscale Solutions , 2010 .

[8]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[9]  Frederik J. Simons,et al.  Slepian functions and their use in signal estimation and spectral analysis , 2009, 0909.5368.

[10]  Frederik J. Simons,et al.  Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.

[11]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[12]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[13]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[14]  F. Simons,et al.  Spatiospectral concentration in the Cartesian plane , 2010, 1007.5226.

[15]  Partha P. Mitra,et al.  The concentration problem for vector fields , 2005 .

[16]  Roland Klees,et al.  The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid , 2012, Journal of Geodesy.

[17]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[18]  E. N. Gilbert,et al.  Doubly Orthogonal Concentrated Polynomials , 1977 .

[19]  C. T. Mullis,et al.  Quadratic Estimators of the Power Spectrum , 1989 .

[20]  Peiliang Xu,et al.  Determination of surface gravity anomalies using gradiometric observables , 1992 .

[21]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[22]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[23]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .

[24]  Z. Martinec The Forward and Adjoint Methods of Global Electromagnetic Induction for CHAMP Magnetic Data , 2014 .

[25]  Frederik J. Simons,et al.  Analysis of real vector fields on the sphere using Slepian functions , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[26]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[27]  D.J. Thomson,et al.  Jackknifing Multitaper Spectrum Estimates , 2007, IEEE Signal Processing Magazine.

[28]  W. M. Kaula,et al.  Theory of statistical analysis of data distributed over a sphere , 1967 .

[29]  Nico Sneeuw,et al.  The polar gap , 1997 .

[30]  Colin J. R. Sheppard,et al.  Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion , 1997 .

[31]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[32]  Partha P. Mitra,et al.  Concentration maximization and local basis expansions (LBEX) for linear inverse problems , 2006, IEEE Transactions on Biomedical Engineering.

[33]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[34]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[35]  F. Simons,et al.  Localized spectral analysis on the sphere , 2005 .

[36]  Z. Martinec,et al.  Spacetime Modeling of the Earth’s Gravity Field by Ellipsoidal Harmonics , 2010 .

[37]  Christian Gerhards,et al.  Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling , 2011 .

[38]  Willi Freeden,et al.  Special Functions in Mathematical Geosciences: An Attempt at a Categorization , 2014 .

[39]  Reiner Rummel,et al.  Geodetic boundary value problems in view of the one centimeter geoid , 1997 .

[40]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[41]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[42]  Simon Haykin,et al.  Advances in spectrum analysis and array processing , 1991 .

[43]  A. Messiah Quantum Mechanics , 1961 .

[44]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[45]  Edward Roy Pike,et al.  Generalized Gaussian quadrature applied to an inverse problem in antenna theory : II: The two-dimensional case with circular symmetry , 2003 .

[46]  M. Zuhair Nashed,et al.  General sampling theorems for functions in reproducing kernel Hilbert spaces , 1991, Math. Control. Signals Syst..

[47]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[48]  Nándor Bokor,et al.  Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing , 2012 .

[49]  Nils Olsen,et al.  Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation , 2014 .

[50]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[51]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[52]  Peiliang Xu Truncated SVD methods for discrete linear ill-posed problems , 1998 .

[53]  Frederik J. Simons,et al.  Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake , 2008 .

[54]  Kung Yao,et al.  Applications of Reproducing Kernel Hilbert Spaces-Bandlimited Signal Models , 1967, Inf. Control..

[55]  N. Bokor,et al.  Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields , 2012, 1205.2057.

[56]  Mehdi Eshagh,et al.  Spatially Restricted Integrals in Gradiometric Boundary Value Problems , 2009 .

[57]  David N. Spergel,et al.  An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.

[58]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[59]  Best unbiased estimates for the microwave background anisotropies , 1997, gr-qc/9702018.

[60]  F. Simons,et al.  Parametrizing surface wave tomographic models with harmonic spherical splines , 2008 .

[61]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .

[62]  R. Kennedy,et al.  Hilbert Space Methods in Signal Processing , 2013 .

[63]  Nils Olsen,et al.  Mathematical Properties Relevant to Geomagnetic Field Modeling , 2010 .

[64]  M. Wieczorek Constraints on the composition of the martian south polar cap from gravity and topography , 2007 .

[65]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[66]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[67]  M. A. Blanco,et al.  Evaluation of the rotation matrices in the basis of real spherical harmonics , 1997 .

[68]  N. Bokor,et al.  Revisiting the Concentration Problem of Vector Fields within a Spherical Cap: A Commuting Differential Operator Solution , 2013, 1302.5261.

[69]  Richard H. Jones,et al.  Stochastic Processes on a Sphere , 1963 .

[70]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.

[71]  F. Grünbaum Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .

[72]  F. Sansò,et al.  Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere , 1999 .

[73]  Willi Freeden,et al.  Handbook of geomathematics , 2010 .

[74]  I. Daubechies,et al.  Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .

[75]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[76]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[77]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[78]  Y. Shkolnisky Prolate spheroidal wave functions on a disc—Integration and approximation of two-dimensional bandlimited functions , 2007 .

[79]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[80]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[81]  Frederik J. Simons,et al.  A spatiospectral localization approach for analyzing and representing vector-valued functions on spherical surfaces , 2013, Optics & Photonics - Optical Engineering + Applications.

[82]  W. Freeden Geomathematics: Its Role, Its Aim, and Its Potential , 2010 .

[83]  S. Mallat A wavelet tour of signal processing , 1998 .

[84]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[85]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[86]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[87]  Frederik J. Simons,et al.  Efficient analysis and representation of geophysical processes using localized spherical basis functions , 2009, Optical Engineering + Applications.

[88]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[89]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[90]  M. K. Paul Recurrence relations for integrals of Associated Legendre functions , 1978 .

[91]  Frederik J. Simons,et al.  A spatiospectral localization approach to estimating potential fields on the surface of a sphere from noisy, incomplete data taken at satellite altitudes , 2007, SPIE Optical Engineering + Applications.

[92]  Willi Freeden,et al.  Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .

[93]  Frederik J. Simons,et al.  Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis , 2000 .

[94]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[95]  Frederik J. Simons,et al.  GJI Geomagnetism, rock magnetism and palaeomagnetism Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions , 2013 .

[96]  F. Simons,et al.  Spatiospectral concentration of vector fields on a sphere , 2013, 1306.3201.

[97]  Duncan J. Wingham The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by singular value decomposition , 1992, IEEE Trans. Signal Process..

[98]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[99]  D. Slepian,et al.  Eigenvalues associated with prolate spheroidal wave functions of zero order , 1965 .