Quasi–Monte Carlo rules for numerical integration over the unit sphere $${\mathbb{S}^2}$$
暂无分享,去创建一个
[1] Leo P. Kadanoff,et al. Discrete Charges on a Two Dimensional Conductor , 2004 .
[2] Enrique Bendito,et al. Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..
[3] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[4] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[5] Peter Kritzer,et al. A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..
[6] I. A. Antonov,et al. An economic method of computing LPτ-sequences , 1979 .
[7] Ian H. Sloan,et al. Optimal lower bounds for cubature error on the sphere S2 , 2005, J. Complex..
[8] F. Pillichshammer,et al. Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .
[9] J. Beck. Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .
[10] J. Dick,et al. A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.
[11] Peter Sjögren,et al. Estimates of mass distributions from their potentials and energies , 1972 .
[12] Zhenzhong Chen,et al. Spherical basis functions and uniform distribution of points on spheres , 2008, J. Approx. Theory.
[13] K. F. Roth. On irregularities of distribution , 1954 .
[14] Wolfgang M. Schmidt. Irregularities of distribution. IV , 1969 .
[15] K. Stolarsky. Sums of distances between points on a sphere. II , 1972 .
[16] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[17] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[18] An inequality connected with Weyl''s criterion for uniform distribution , 1965 .
[19] A. Lubotzky,et al. Hecke operators and distributing points on the sphere I , 1986 .
[20] Ian H. Sloan,et al. Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..
[21] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[22] Achill Schürmann,et al. Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..
[23] Hans-Peter Blatt,et al. Discrepancy Estimates on the Sphere , 1999 .
[24] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[25] E. Saff,et al. Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.
[26] Xingping Sun,et al. LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.
[27] GEROLD WAGNER,et al. ON MEANS OF DISTANCES ON THE SURFACE OF A SPHERE (LOWER BOUNDS) , 2012 .
[28] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[29] Jianjun Cui,et al. Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..
[30] E. Saff,et al. Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.
[31] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[32] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[33] Gerold Wagner. Erdős-Turán inequalities for distance functions on spheres. , 1992 .
[34] J. Vaaler,et al. SOME TRIGONOMETRIC EXTREMAL FUNCTIONS AND THE ERDOS-TURAN TYPE INEQUALITIES , 1999 .
[35] Harald Niederreiter,et al. Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .
[36] A. Lubotzky,et al. Hecke operators and distributing points on S2. II , 1987 .
[37] Enrique Bendito Pérez,et al. Computational cost of the Fekete problem , 2007 .
[38] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[39] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[40] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[41] Peter J. Grabner,et al. Erdös-Turán type discrepancy bounds , 1991 .
[42] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[43] Johann S. Brauchart,et al. Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..
[44] K. Stolarsky,et al. SUMS OF DISTANCES BETWEEN POINTS ON A SPHERE, n , 2010 .
[45] Gerold Wagner,et al. On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .
[46] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[47] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[48] Art B. Owen,et al. Variance with alternative scramblings of digital nets , 2003, TOMC.