Quasi–Monte Carlo rules for numerical integration over the unit sphere $${\mathbb{S}^2}$$

We study numerical integration on the unit sphere $${\mathbb{S}^2 \subseteq\mathbb{R}^3}$$ using equal weight quadrature rules, where the weights are such that constant functions are integrated exactly. The quadrature points are constructed by lifting a (0, m, 2)-net given in the unit square [0, 1]2 to the sphere $${\mathbb{S}^2}$$ by means of an area preserving map. A similar approach has previously been suggested by Cui and Freeden [SIAM J Sci Comput 18(2):595–609, 1997]. We prove three results. The first one is that the construction is (almost) optimal with respect to discrepancies based on spherical rectangles. Further we prove that the point set is asymptotically uniformly distributed on $${\mathbb{S}^2}$$ . And finally, we prove an upper bound on the spherical cap L2-discrepancy of order N−1/2(log N)1/2 (where N denotes the number of points). This improves upon the bound on the spherical cap L2-discrepancy of the construction by Lubotzky, Phillips and Sarnak [Commun Pure Appl Math 39(S, suppl):S149–S186, 1986] by a factor of $${\sqrt{\log N}}$$ . Numerical results suggest that the (0, m, 2)-nets lifted to the sphere $${\mathbb{S}^2}$$ have spherical cap L2-discrepancy converging with the optimal order of N−3/4.

[1]  Leo P. Kadanoff,et al.  Discrete Charges on a Two Dimensional Conductor , 2004 .

[2]  Enrique Bendito,et al.  Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..

[3]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[4]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[5]  Peter Kritzer,et al.  A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..

[6]  I. A. Antonov,et al.  An economic method of computing LPτ-sequences , 1979 .

[7]  Ian H. Sloan,et al.  Optimal lower bounds for cubature error on the sphere S2 , 2005, J. Complex..

[8]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[9]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[10]  J. Dick,et al.  A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.

[11]  Peter Sjögren,et al.  Estimates of mass distributions from their potentials and energies , 1972 .

[12]  Zhenzhong Chen,et al.  Spherical basis functions and uniform distribution of points on spheres , 2008, J. Approx. Theory.

[13]  K. F. Roth On irregularities of distribution , 1954 .

[14]  Wolfgang M. Schmidt Irregularities of distribution. IV , 1969 .

[15]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[16]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[17]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[18]  An inequality connected with Weyl''s criterion for uniform distribution , 1965 .

[19]  A. Lubotzky,et al.  Hecke operators and distributing points on the sphere I , 1986 .

[20]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[21]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[22]  Achill Schürmann,et al.  Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..

[23]  Hans-Peter Blatt,et al.  Discrepancy Estimates on the Sphere , 1999 .

[24]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[25]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[26]  Xingping Sun,et al.  LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.

[27]  GEROLD WAGNER,et al.  ON MEANS OF DISTANCES ON THE SURFACE OF A SPHERE (LOWER BOUNDS) , 2012 .

[28]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[29]  Jianjun Cui,et al.  Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..

[30]  E. Saff,et al.  Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.

[31]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[32]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[33]  Gerold Wagner Erdős-Turán inequalities for distance functions on spheres. , 1992 .

[34]  J. Vaaler,et al.  SOME TRIGONOMETRIC EXTREMAL FUNCTIONS AND THE ERDOS-TURAN TYPE INEQUALITIES , 1999 .

[35]  Harald Niederreiter,et al.  Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .

[36]  A. Lubotzky,et al.  Hecke operators and distributing points on S2. II , 1987 .

[37]  Enrique Bendito Pérez,et al.  Computational cost of the Fekete problem , 2007 .

[38]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[39]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[40]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[41]  Peter J. Grabner,et al.  Erdös-Turán type discrepancy bounds , 1991 .

[42]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[43]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[44]  K. Stolarsky,et al.  SUMS OF DISTANCES BETWEEN POINTS ON A SPHERE, n , 2010 .

[45]  Gerold Wagner,et al.  On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .

[46]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[47]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[48]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.