Efficient and robust signal approximations

Representation of natural signals such as sounds and images is critically important in a broad range of fields such as multimedia, data communication and storage, biomedical imaging, robotics, and computational neuroscience. Often it is crucial that the representation be efficient, i.e., the signals of interest are encoded economically. It is also desirable that the representation be robust to various types of noise. In this thesis, we advocate several ways to expand current signal encoding approaches via the framework of adaptive representations. In recent decades, the multiresolution paradigm has provided powerful mathematical and algorithmic tools to signal encoding. In spite of widely proven effectiveness, such methods ignore statistical structure of the class of signals they should represent. On the other hand, high computational costs artificially confine standard linear adaptive statistical models to relatively small block-based encoding scenarios. We show that a good tradeoff between computational complexity and coding efficiency can be achieved via a hybrid encoding scheme: Multiresolution ICA. When applied to natural images the new method significantly outperforms JPEG2000, the current compression standard, which indicates adaptivity as a source of practical improvement for modern coders. Sparsely encoding large signals via a set of adaptive variable-size shiftable kernels has been studied in several contexts, like efficient auditory coding. One important merit of this paradigm is that, besides efficient adaptive coding, it also provides a direct approach towards an (approximately) shift-invariant representation. This is especially desirable in modeling encoding systems robust to signal shifts, such as biological sensory systems. We study this problem in the case of images and provide contributions leading to fast and superfast algorithms, significantly improving the complexity of the kernel learning process. The third part of this thesis is a mathematical study of Robust Coding - the problem of optimal linear coding with limited precision units. We characterize optimal solutions in the case of Gaussian channel noise and arbitrarily many encoding units, and derive efficient and stable algorithms for their computation. By expressing the limit of optimization as a closed-form bound, we provide a formal justification of the intuition that noisy encoding units can preserve signal information if sufficiently many are used - a case very relevant to modeling neural encoding systems.

[1]  Christopher M. Brislawn,et al.  FBI compression standard for digitized fingerprint images , 1996, Optics & Photonics.

[2]  Markus Püschel,et al.  Algebraic Signal Processing Theory: Foundation and 1-D Time , 2008, IEEE Transactions on Signal Processing.

[3]  Kyong-Hwa Lee,et al.  Optimal Linear Coding for Vector Channels , 1976, IEEE Trans. Commun..

[4]  Zhifeng Zhang,et al.  Adaptive Nonlinear Approximations , 1994 .

[5]  P. Casazza,et al.  A Physical Interpretation for Finite Tight Frames , 2003 .

[6]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[7]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[8]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[9]  Kyong-Hwa Lee Optimal linear coding for a multichannel system , 1975 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[12]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[13]  Ali Mansour,et al.  Blind Separation of Sources , 1999 .

[14]  Michael S. Lewicki,et al.  Robust Coding Over Noisy Overcomplete Channels , 2007, IEEE Transactions on Image Processing.

[15]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[16]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[17]  J. Benedetto Harmonic Analysis and Applications , 2020 .

[18]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[19]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[22]  Justinian P. Rosca,et al.  Statistical Inference of Missing Speech Data in the ICA Domain , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[23]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[24]  Seungjin Choi,et al.  A relative trust-region algorithm for independent component analysis , 2007, Neurocomputing.

[25]  George Labahn,et al.  Inversion of mosaic Hankel matrices via matrix polynomial systems , 1995 .

[26]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[27]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[28]  L. Rebollo-Neira,et al.  Optimized orthogonal matching pursuit approach , 2002, IEEE Signal Processing Letters.

[29]  B. Olshausen,et al.  Statistical methods for image and signal processing , 2004 .

[30]  Laura Rebollo-Neira Backward adaptive biorthogonalization , 2004, Int. J. Math. Math. Sci..

[31]  José M. F. Moura,et al.  The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms , 2003, SIAM J. Comput..

[32]  Bruno A. Olshausen,et al.  Learning Sparse Image Codes using a Wavelet Pyramid Architecture , 2000, NIPS.

[33]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[34]  John Langford,et al.  Telling humans and computers apart automatically , 2004, CACM.

[35]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[36]  Nariman Farvardin,et al.  Optimum quantizer performance for a class of non-Gaussian memoryless sources , 1984, IEEE Trans. Inf. Theory.

[37]  J.G. Daugman,et al.  Entropy reduction and decorrelation in visual coding by oriented neural receptive fields , 1989, IEEE Transactions on Biomedical Engineering.

[38]  Pierre Vandergheynst,et al.  Learning sparse generative models of audiovisual signals , 2008, 2008 16th European Signal Processing Conference.

[39]  Michael S. Lewicki,et al.  A Theory of Retinal Population Coding , 2006, NIPS.

[40]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[41]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  N. N. Chan,et al.  Diagonal elements and eigenvalues of a real symmetric matrix , 1983 .

[43]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[44]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[45]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[46]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[47]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[48]  José M. F. Moura,et al.  Algebraic Signal Processing Theory , 2006, ArXiv.

[49]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[50]  Michel Barret,et al.  ICA-Based Algorithms Applied to Image Coding , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[51]  C. Brislawn Classification of Nonexpansive Symmetric Extension Transforms for Multirate Filter Banks , 1996 .

[52]  Sacha Krstulovic,et al.  Mptk: Matching Pursuit Made Tractable , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[53]  Laura Rebollo-Neira,et al.  A swapping-based refinement of orthogonal matching pursuit strategies , 2006, Signal Process..

[54]  Georg Heinig,et al.  An Algorithm Based on Orthogonal Polynominal Vectors for Toeplitz Least Squares Problems , 2000, NAA.

[55]  Pierre Comon,et al.  How fast is FastICA? , 2006, 2006 14th European Signal Processing Conference.

[56]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[57]  S. Mallat A wavelet tour of signal processing , 1998 .

[58]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[59]  Laura Rebollo-Neira,et al.  Backward-optimized orthogonal matching pursuit approach , 2004, IEEE Signal Processing Letters.

[60]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[61]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[62]  C. Heil Harmonic Analysis and Applications , 2006 .

[63]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[64]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[65]  Michael S. Lewicki,et al.  Adaptive coding of images via multiresolution ICA , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[66]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[67]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[68]  Michael S. Lewicki,et al.  Sparse Coding of Natural Images Using an Overcomplete Set of Limited Capacity Units , 2004, NIPS.

[69]  Justinian P. Rosca,et al.  Independent Component Analysis for Speech Enhancement with Missing TF Content , 2006, ICA.

[70]  Jean-François Cardoso High-Order Constrasts for Independent Component Analysis , 1999, Neural Comput..

[71]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[72]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[73]  Michael S. Lewicki,et al.  A Theoretical Analysis of Robust Coding over Noisy Overcomplete Channels , 2005, NIPS.

[74]  Aliaksei Sandryhaila,et al.  Alternatives to the discrete fourier transform , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[75]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[76]  Yehoshua Y. Zeevi,et al.  A Multiscale Framework For Blind Separation of Linearly Mixed Signals , 2003, J. Mach. Learn. Res..

[77]  M. Lewicki,et al.  Point Coding : Sparse Image Representation with Adaptive Shiftable-Kernel Dictionaries , 2009 .

[78]  P. Comon Independent Component Analysis , 1992 .

[79]  Robert W. Heath,et al.  Generalized Finite Algorithms for Constructing Hermitian Matrices with Prescribed Diagonal and Spectrum , 2005, SIAM J. Matrix Anal. Appl..

[80]  Mário A. T. Figueiredo,et al.  Class-adapted image compression using independent component analysis , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[81]  Terrence J. Sejnowski,et al.  Spatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes , 2003, Neural Computation.

[82]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[83]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[84]  T. Kailath,et al.  Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .

[85]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[86]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[87]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions with matching pursuit , 1994, Defense, Security, and Sensing.

[88]  Georg Heinig,et al.  Generalized inverses of Hankel and Toeplitz mosaic matrices , 1995 .

[89]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[90]  Pierre Vandergheynst,et al.  MoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[91]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[92]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[93]  Pierre Vandergheynst,et al.  Shift-invariant dictionary learning for sparse representations: Extending K-SVD , 2008, 2008 16th European Signal Processing Conference.

[94]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[96]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[97]  Rabab Kreidieh Ward,et al.  JasPer: a portable flexible open-source software tool kit for image coding/processing , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[98]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[99]  Georg Heinig,et al.  A superfast method for solving Toeplitz linear least squares problems , 2003 .

[100]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[101]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[102]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[103]  Jelena Kovacevic,et al.  Real, tight frames with maximal robustness to erasures , 2005, Data Compression Conference.

[104]  Michael Elad,et al.  Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..

[105]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[106]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[107]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[108]  Simon J. Thorpe,et al.  Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit , 2004, Neurocomputing.

[109]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[110]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[111]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[112]  M. R. Mickey,et al.  Population correlation matrices for sampling experiments , 1978 .

[113]  Michael S. Lewicki,et al.  Efficient Coding of Time-Relative Structure Using Spikes , 2005, Neural Computation.

[114]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..