Vasoconstriction is determined by interstitial rather than circulating angiotensin II

[1]  A. Danser,et al.  Production of angiotensins I and II at tissue sites in intact pigs. , 1992, The American journal of physiology.

[2]  K. Endlich,et al.  AT2 antagonist‐sensitive potentiation of angiotensin II‐induced constriction by NO blockade and its dependence on endothelium and P450 eicosanoids in rat renal vasculature , 1998, British journal of pharmacology.

[3]  A. Danser,et al.  Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. , 1997, Journal of molecular and cellular cardiology.

[4]  H. Pieterman,et al.  Regional angiotensin II production in essential hypertension and renal artery stenosis. , 1993, Hypertension.

[5]  A. Danser,et al.  Localization and production of angiotensin II in the isolated perfused rat heart. , 1998, Hypertension.

[6]  H. Schunkert,et al.  Regulation of Angiotensin Converting Enzyme Activity and mRNA Levels by Angiotensin II , 2005 .

[7]  A. Danser,et al.  Bradykinin Potentiation by Angiotensin-(1-7) and ACE Inhibitors Correlates With ACE C- and N-Domain Blockade , 2001, Hypertension.

[8]  S. Oparil,et al.  Evidence for angiotensin-converting enzyme- and chymase-mediated angiotensin II formation in the interstitial fluid space of the dog heart in vivo. , 1999, Circulation.

[9]  M. M. Lunzer,et al.  Effect of bilateral nephrectomy on active renin, angiotensinogen, and renin glycoforms in plasma and myocardium. , 1997, Hypertension.

[10]  D. Campbell,et al.  Circulating and Tissue Angiotensin Systems , 1987 .

[11]  D. Duncker,et al.  Cardiac interstitial fluid levels of angiotensin I and II in the pig. , 1999, Journal of hypertension.

[12]  D. Diz,et al.  Counterregulatory actions of angiotensin-(1-7). , 1997, Hypertension.

[13]  D. Duncker,et al.  Subcellular localization of angiotensin II in kidney and adrenal , 2001, Journal of hypertension.

[14]  A. Danser,et al.  Renin-angiotensin system components in the interstitial fluid of the isolated perfused rat heart. Local production of angiotensin I. , 1997, Hypertension.

[15]  T. Stijnen,et al.  The perfused human bronchiolar tube characteristics of a new model. , 1992, Journal of pharmacological and toxicological methods.

[16]  M. Schalekamp,et al.  Angiotensin converting enzyme is the main contributor to angiotensin I–II conversion in the interstitium of the isolated perfused rat heart , 2001, Journal of hypertension.

[17]  B. Waeber,et al.  Specific measurement of angiotensin metabolites and in vitro generated angiotensin II in plasma. , 1986, Hypertension.

[18]  B. Healy,et al.  Angiotensin II-forming pathways in normal and failing human hearts. , 1990, Circulation research.

[19]  R. Reed,et al.  Compliance of the interstitial space in rats , 1984 .

[20]  A. Danser,et al.  Metabolism of angiotensin I by different tissues in the intact animal. , 1992, The American journal of physiology.

[21]  R. Carey,et al.  Renal Interstitial Fluid Angiotensin: Modulation by Anesthesia, Epinephrine, Sodium Depletion, and Renin Inhibition , 1995 .

[22]  M. Paul,et al.  The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. , 1995, The Journal of clinical investigation.

[23]  M. Horiuchi,et al.  Angiotensin II type 2 receptor mediates programmed cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Heiligers,et al.  A61603-induced vasoconstriction in porcine carotid vasculature: involvement of a non-adrenergic mechanism. , 2001, European journal of pharmacology.

[25]  M. Yacoub,et al.  Alternative pathways of angiotensin II production in the human saphenous vein , 1998, British journal of pharmacology.

[26]  R. Panek,et al.  Subclasses of angiotensin II binding sites and their functional significance. , 1990, Molecular pharmacology.

[27]  A. Zwart,et al.  Modulation of AT1 receptor‐mediated contraction of rat uterine artery by AT2 receptors , 1998, British journal of pharmacology.

[28]  A. Danser,et al.  Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. , 1999, Cardiovascular research.

[29]  W. Gonzalez,et al.  Endothelium-independent conversion of angiotensin I by vascular smooth muscle cells , 2001, Cell and Tissue Research.

[30]  D. Rodbard,et al.  Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. , 1978, The American journal of physiology.

[31]  S. Whitebread,et al.  Preliminary biochemical characterization of two angiotensin II receptor subtypes. , 1989, Biochemical and biophysical research communications.

[32]  Y. Pinto,et al.  Dual pathway for angiotensin II formation in human internal mammary arteries , 1998, British journal of pharmacology.

[33]  M. Pfaffendorf,et al.  Comparative effects of angiotensin II and its degradation products angiotensin III and angiotensin IV in rat aorta , 1995, British journal of pharmacology.

[34]  R. Schmieder,et al.  Angiotensinases restrict locally generated angiotensin II to the blood vessel wall. , 1998, Hypertension.

[35]  S. Oparil,et al.  Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. , 1997, The Journal of clinical investigation.

[36]  R. Reed,et al.  Compliance of the interstitial space in rats. III. Contribution of skin and skeletal muscle interstitial fluid volume to changes in total extracellular fluid volume. , 1984, Acta physiologica Scandinavica.

[37]  D. Diz,et al.  Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vasoconstriction in canine coronary arteries and human platelet aggregation. , 2000, The Journal of pharmacology and experimental therapeutics.

[38]  J. Saris,et al.  Functional importance of angiotensin-converting enzyme-dependent in situ angiotensin II generation in the human forearm. , 2000, Hypertension.

[39]  G. Chisolm,et al.  The interstitial space of adipose tissue as determined by single injection and equilibration techniques. , 1975, Acta physiologica Scandinavica.

[40]  H. Matsubara,et al.  Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. , 1998, Circulation research.

[41]  F. Boomsma,et al.  Angiotensin-Converting Enzyme Inhibition and Angiotensin II Type 1 Receptor Blockade Prevent Cardiac Remodeling in Pigs After Myocardial Infarction: Role of Tissue Angiotensin II , 2000, Circulation.

[42]  W. J. van der Giessen,et al.  Conversion and degradation of [125I] labelled angiotensin I in isolated perfused porcine coronary and carotid arteries. , 1995, Cardiovascular research.

[43]  H. Urata,et al.  Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. , 1993, The Journal of clinical investigation.