Silicon/Carbon Nanotube/BaTiO₃ Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential.

We report on the synergetic effects of silicon (Si) and BaTiO3 (BTO) for applications as the anode of Li-ion batteries. The large expansion of Si during lithiation was exploited as an energy source via piezoelectric BTO nanoparticles. Si and BTO nanoparticles were dispersed in a matrix consisting of multiwalled carbon nanotubes (CNTs) using a high-energy ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the BTO, which can be poled, so that a piezoelectric potential is generated. We found that this local piezoelectric potential can improve the electrochemical performance of the Si/CNT/BTO nanocomposite anodes. Experimental measurements and simulation results support the increased mobility of Li-ions due to the local piezoelectric potential.

[1]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[2]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[3]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[4]  Yen-Hwei Chang,et al.  Cubic to Tetragonal Phase Transformation of Ultrafine BaTiO3 Crystallites at Room Temperature , 1995 .

[5]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[6]  Nobuyuki Imanishi,et al.  Enhanced Lithium‐Ion Transport in PEO‐Based Composite Polymer Electrolytes with Ferroelectric BaTiO3 , 1999 .

[7]  Yasuo Takeda,et al.  Silicon/Carbon Composites as Anode Materials for Li-Ion Batteries , 2004 .

[8]  John Newman,et al.  Electrochemical Systems, 3rd Edition , 2004 .

[9]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[10]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[11]  C. Bowen,et al.  Characterisation of barium titanate-silver composites, part I: Microstructure and mechanical properties , 2006 .

[12]  C. Bowen,et al.  Characterisation of barium titanate-silver composites part II: Electrical properties , 2006 .

[13]  J. Tani,et al.  Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering , 2006 .

[14]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[15]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[16]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[17]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[18]  X. Zhang,et al.  Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes , 2009 .

[19]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[20]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[21]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[22]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[23]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[24]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[25]  Byoung-Sun Lee,et al.  PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT , 2010 .

[26]  Wen Chen,et al.  Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO3 Nanoparticles , 2010, Nanoscale research letters.

[27]  Hyun‐Kon Song,et al.  A hollow sphere secondary structure of LiFePO4 nanoparticles. , 2010, Chemical communications.

[28]  Jochen Zausch,et al.  Modeling of Species and Charge Transport in Li-Ion Batteries Based on Non-equilibrium Thermodynamics , 2010, NMA.

[29]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[30]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[31]  Ming Zhou,et al.  Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface , 2012 .

[32]  Byoung-Sun Lee,et al.  An effective method for manufacturing hollow carbon nanofibers and microstructural analysis , 2012, Macromolecular Research.

[33]  Yan Zhang,et al.  Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. , 2012, Nano letters.

[34]  Y. Cuia,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[35]  Sehee Lee,et al.  Anodic properties of hollow carbon nanofibers for Li-ion battery , 2012 .

[36]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[37]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[38]  Sehee Lee,et al.  Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode , 2012 .

[39]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[40]  K. Lee,et al.  Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. , 2013, ACS nano.

[41]  Sehee Lee,et al.  Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers. , 2013, Nanoscale.

[42]  Byoung-Sun Lee,et al.  Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multi-channels via coaxial electrospinning and their anodic performance , 2014 .

[43]  U. Chung,et al.  Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery. , 2014, Nanoscale.

[44]  H. Yamasaki,et al.  Dielectric Modification of 5V‐Class Cathodes for High‐Voltage All‐Solid‐State Lithium Batteries , 2014 .

[45]  C. J. Kerr,et al.  Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy , 2014, Nature Communications.

[46]  Manoj Kumar Gupta,et al.  Ferroelectric Coupling Effect on the Energy‐Band Structure of Hybrid Heterojunctions with Self‐Organized P(VDF‐TrFE) Nanomatrices , 2014, Advanced materials.

[47]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[48]  H. Hashimoto,et al.  High-rate performance of ferroelectric BaTiO3-coated LiCoO2 for Li-ion batteries , 2014 .

[49]  Byoung-Sun Lee,et al.  Facile method to improve initial reversible capacity of hollow carbon nanofiber anodes , 2015 .

[50]  Tae Yun Kim,et al.  Thermally Induced Strain‐Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators , 2015 .