Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model

AbstractA two-dimensional nonhydrostatic (NH) atmospheric model based on the compressible Euler system has been developed in the (x, z) Cartesian domain. The spatial discretization is based on a nodal discontinuous Galerkin (DG) method with exact integration. The orography is handled by the terrain-following height-based coordinate system. The time integration uses the horizontally explicit and vertically implicit (HEVI) time-splitting scheme, which is introduced to address the stringent restriction on the explicit time step size due to a high aspect ratio between the horizontal (x) and vertical (z) spatial discretization. The HEVI scheme is generally based on the Strang-type operator-split approach, where the horizontally propagating waves in the Euler system are solved explicitly while the vertically propagating waves are treated implicitly. As a consequence, the HEVI scheme relaxes the maximum allowed time step to be mainly determined by the horizontal grid spacing. The accuracy of the HEVI scheme is r...

[1]  Christiane Jablonowski,et al.  Operator-Split Runge-Kutta-Rosenbrock Methods for Nonhydrostatic Atmospheric Models , 2012 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Chi-Wang Shu,et al.  High order time discretization methods with the strong stability property , 2001 .

[4]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[5]  Nigel Wood,et al.  An inherently mass‐conserving iterative semi‐implicit semi‐Lagrangian discretization of the non‐hydrostatic vertical‐slice equations , 2010 .

[6]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[7]  G. Simarro,et al.  A non-hydrostatic global spectral dynamical core using a height-based vertical coordinate , 2013 .

[8]  Masaki Satoh,et al.  A New Approach to Atmospheric General Circulation Model: Global Cloud Resolving Model NICAM and its Computational Performance , 2008, SIAM J. Sci. Comput..

[9]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[10]  D. Durran,et al.  A Compressible Model for the Simulation of Moist Mountain Waves , 1983 .

[11]  Lei Bao,et al.  A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere , 2014, J. Comput. Phys..

[12]  Andreas Dedner,et al.  Comparison of dynamical cores for NWP models , 2012 .

[13]  R. Nair Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model , 2009 .

[14]  Nigel Wood,et al.  Runge-Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations , 2013, J. Comput. Phys..

[15]  Richard Liska,et al.  Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..

[16]  David A. Randall,et al.  Design of a Nonhydrostatic Atmospheric Model Based on a Generalized Vertical Coordinate , 2009 .

[17]  Oliver Fuhrer,et al.  Numerical consistency of metric terms in terrain-following coordinates , 2003 .

[18]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[19]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[20]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[21]  Feng Xiao,et al.  A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics , 2013 .

[22]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[23]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[24]  Nigel Wood,et al.  Numerical analyses of Runge–Kutta implicit–explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models , 2014 .

[25]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[26]  Andreas Dedner,et al.  Comparison of dynamical cores for NWP models: comparison of COSMO and Dune , 2013 .

[27]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[28]  Amik St.-Cyr,et al.  A Fully Implicit Jacobian-Free High-Order Discontinuous Galerkin Mesoscale Flow Solver , 2009, ICCS.

[29]  Jing-Mei Qiu,et al.  A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .

[30]  Masaki Satoh,et al.  Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme , 2002 .

[31]  Nash'at Ahmad,et al.  Euler solutions using flux‐based wave decomposition , 2007 .

[32]  Nicholas J. Wright,et al.  WRF nature run , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[33]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[34]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[35]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[36]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[37]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[38]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[39]  Matthew R. Norman,et al.  A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics , 2011, J. Comput. Phys..

[40]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[41]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..

[42]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[43]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[44]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[45]  R. Nair,et al.  A Nonoscillatory Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2012 .

[46]  Joseph B. Klemp,et al.  A Terrain-Following Coordinate with Smoothed Coordinate Surfaces , 2011 .

[47]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[48]  P. Lauritzen,et al.  Emerging numerical methods for atmospheric modeling , 2011 .

[49]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .