A Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems
暂无分享,去创建一个
[1] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[2] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[3] Michael P. Friedlander,et al. A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization , 2005, SIAM J. Optim..
[4] J. F. Bonnans,et al. Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .
[5] Stephen J. Wright. Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..
[6] Ekkehard W. Sachs,et al. Global Convergence of Inexact Reduced SQP Methods , 1995, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[7] Nicholas I. M. Gould,et al. SQP Methods for Large-Scale Nonlinear Programming , 1999, System Modelling and Optimization.
[8] Jorge Nocedal,et al. An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..
[9] Alexey F. Izmailov,et al. Sensitivity Analysis for Cone-Constrained Optimization Problems Under the Relaxed Constraint Qualifications , 2005, Math. Oper. Res..
[10] Michael A. Saunders,et al. A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .
[11] Mikhail V. Solodov,et al. Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems , 2010, Math. Program..
[12] Paul T. Boggs,et al. Sequential Quadratic Programming , 1995, Acta Numerica.
[13] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[14] S. M. Robinson. Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .
[15] S. Ulbrich. Generalized SQP-Methods with ''Parareal'' Time-Domain Decomposition for Time-dependent PDE-constrained Optimization , 2007 .
[16] Jorge Nocedal,et al. An Inexact SQP Method for Equality Constrained Optimization , 2008, SIAM J. Optim..
[17] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[18] N. Maratos,et al. Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .
[19] Stephen J. Wright. Modifying SQP for Degenerate Problems , 2002, SIAM J. Optim..
[20] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[21] Jacek Gondzio,et al. A New Unblocking Technique to Warmstart Interior Point Methods Based on Sensitivity Analysis , 2008, SIAM J. Optim..
[22] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[23] S. Glad. Properties of updating methods for the multipliers in augmented Lagrangians , 1979 .
[24] Walter Murray,et al. Sequential quadratic programming methods based on indefinite Hessian approximations , 1999 .
[25] Michael A. Saunders,et al. MINOS 5. 0 user's guide , 1983 .
[26] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[27] Matthias Heinkenschloss,et al. An Inexact Trust-Region SQP Method with Applications to PDE-Constrained Optimization , 2008 .
[28] Mikhail V. Solodov,et al. On local convergence of sequential quadratically-constrained quadratic-programming type methods, with an extension to variational problems , 2008, Comput. Optim. Appl..
[29] Claudia A. Sagastizábal,et al. Parallel Variable Distribution for Constrained Optimization , 2002, Comput. Optim. Appl..
[30] Michael A. Saunders,et al. USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .
[31] Mikhail V. Solodov,et al. Global convergence of an SQP method without boundedness assumptions on any of the iterative sequences , 2009 .
[32] Klaus Schittkowski,et al. More test examples for nonlinear programming codes , 1981 .
[33] S. M. Robinson,et al. A quadratically-convergent algorithm for general nonlinear programming problems , 1972, Math. Program..
[34] Mikhail V. Solodov,et al. On the Sequential Quadratically Constrained Quadratic Programming Methods , 2004, Math. Oper. Res..
[35] Ekkehard W. Sachs,et al. Inexact SQP Interior Point Methods and Large Scale Optimal Control Problems , 1999, SIAM J. Control. Optim..
[36] William W. Hager,et al. Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..
[37] Luís N. Vicente,et al. Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..
[38] Alexey F. Izmailov,et al. On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers , 2011, Math. Program..
[39] JON W. TOLLEMathematics,et al. A Truncated Sqp Algorithm for Large Scale Nonlinear Programming Problems , 2007 .
[40] N. Gould. Some Reflections on the Current State of Active-Set and Interior-Point Methods for Constrained Op , 2003 .
[41] Nicholas I. M. Gould,et al. Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.
[42] Masao Fukushima,et al. A Sequential Quadratically Constrained Quadratic Programming Method for Differentiable Convex Minimization , 2002, SIAM J. Optim..
[43] Francisco J. Prieto,et al. A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem , 1995, SIAM J. Optim..
[44] Mihai Anitescu,et al. A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming , 2002, SIAM J. Optim..
[45] Alexey F. Izmailov,et al. Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization , 2010, Comput. Optim. Appl..
[46] Jorge Nocedal,et al. An inexact Newton method for nonconvex equality constrained optimization , 2009, Math. Program..
[47] Klaus Schittkowski,et al. Test examples for nonlinear programming codes , 1980 .
[48] Jorge Nocedal,et al. On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..
[49] 邵文革,et al. Gilbert综合征二例 , 2009 .
[50] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.