A Mathematica package for q-holonomic sequences and power series
暂无分享,去创建一个
[1] Martin Rubey,et al. Extended rate, more GFUN , 2007, J. Symb. Comput..
[2] Keith O. Geddes,et al. Telescoping in the context of symbolic summation in Maple , 2004, J. Symb. Comput..
[3] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[4] Christian Mallinger,et al. Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences , 2001 .
[5] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[6] Andrew V. Sills,et al. On identities of the Rogers-Ramanujan type , 2006, 1811.11285.
[7] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[8] Peter Paule,et al. Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..
[9] W. Koepf,et al. Functions satisfying holonomic q-differential equations , 2007 .
[10] Arnold Knopfmacher,et al. An Infinite Family of Engel Expansions of Rogers-Ramanujan Type , 2000, Adv. Appl. Math..
[11] George E. Andrews,et al. On a Conjecture of Peter Borwein , 1995, J. Symb. Comput..
[12] David M. Bressoud,et al. Some identities for terminating q-series , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] M. Ismail. Lectures on q-Orthogonal Polynomials , 2001 .
[14] G. Andrews. ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .
[15] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..
[16] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[17] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[18] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[19] Peter Paule,et al. A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .
[20] Mourad E. H. Ismail,et al. Special functions, q-series, and related topics , 1997 .
[21] Donald E. Knuth. The Sandwich Theorem , 1994, Electron. J. Comb..
[22] Axel Riese,et al. qMultiSum--a package for proving q-hypergeometric multiple summation identities , 2003, J. Symb. Comput..
[23] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[24] Wolfram Koepf,et al. Properties of q-holonomic functions , 2007 .