A Mathematica package for q-holonomic sequences and power series

We describe a Mathematica package for dealing with q-holonomic sequences and power series. The package is intended as a q-analogue of the Maple package gfun and the Mathematica package GeneratingFunctions. It provides commands for addition, multiplication, and substitution of these objects, for converting between various representations (q-differential equations, q-recurrence equations, q-shift equations), for computing sequence terms and power series coefficients, and for guessing recurrence equations given initial terms of a sequence.

[1]  Martin Rubey,et al.  Extended rate, more GFUN , 2007, J. Symb. Comput..

[2]  Keith O. Geddes,et al.  Telescoping in the context of symbolic summation in Maple , 2004, J. Symb. Comput..

[3]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[4]  Christian Mallinger,et al.  Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences , 2001 .

[5]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[6]  Andrew V. Sills,et al.  On identities of the Rogers-Ramanujan type , 2006, 1811.11285.

[7]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[8]  Peter Paule,et al.  Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..

[9]  W. Koepf,et al.  Functions satisfying holonomic q-differential equations , 2007 .

[10]  Arnold Knopfmacher,et al.  An Infinite Family of Engel Expansions of Rogers-Ramanujan Type , 2000, Adv. Appl. Math..

[11]  George E. Andrews,et al.  On a Conjecture of Peter Borwein , 1995, J. Symb. Comput..

[12]  David M. Bressoud,et al.  Some identities for terminating q-series , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  M. Ismail Lectures on q-Orthogonal Polynomials , 2001 .

[14]  G. Andrews ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .

[15]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[16]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[17]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[18]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[19]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[20]  Mourad E. H. Ismail,et al.  Special functions, q-series, and related topics , 1997 .

[21]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[22]  Axel Riese,et al.  qMultiSum--a package for proving q-hypergeometric multiple summation identities , 2003, J. Symb. Comput..

[23]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[24]  Wolfram Koepf,et al.  Properties of q-holonomic functions , 2007 .