Real Computable Manifolds and Homotopy Groups

Using the model of real computability developed by Blum, Cucker, Shub, and Smale, we investigate the difficulty of determining the answers to several basic topological questions about manifolds. We state definitions of real-computable manifold and of real-computable paths in such manifolds, and show that, while BSS machines cannot in general decide such questions as nullhomotopy and simple connectedness for such structures, there are nevertheless real-computable presentations of paths and homotopy equivalence classes under which such computations are possible.

[1]  Russell G. Miller Locally Computable Structures , 2007, CiE.

[2]  W. Haken,et al.  Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten , 1961 .

[3]  Benedikt Löwe,et al.  New Computational Paradigms , 2005 .

[4]  L. Blum A Theory of Computation and Complexity over the real numbers , 1991 .

[5]  Horst Schubert,et al.  Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .

[6]  Felipe Cucker,et al.  The complexity of semilinear problems in succinct representation , 2005, computational complexity.

[7]  A. Weil,et al.  Book Review: Introduction to the theory of algebraic functions of one variable , 1951 .

[8]  H. Weyl,et al.  The concept of a Riemann surface , 1964 .

[9]  W. Haken Theorie der Normalflächen , 1961 .

[10]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[11]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[12]  Geoffrey Hemion,et al.  On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .

[13]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[14]  A. Weil,et al.  Review: C. Chevalley, Introduction to the theory of algebraic functions of one variable , 1951 .

[16]  Shmuel Weinberger,et al.  Algorithmic aspects of homeomorphism problems , 1997 .

[17]  Joel David Hamkins,et al.  INFINITE TIME COMPUTABLE MODEL THEORY , 2008 .

[18]  Peter Bürgisser,et al.  The Complexity of Computing the Hilbert Polynomial of Smooth Equidimensional Complex Projective Varieties , 2005, Found. Comput. Math..

[19]  R. Ho Algebraic Topology , 2022 .

[20]  Felipe Cucker,et al.  The complexity to compute the Euler characteristic of complex varieties , 2004 .

[21]  R. Soare Recursively enumerable sets and degrees , 1987 .

[22]  J. E. PORTER SOME RESULTS ON R-COMPUTABLE STRUCTURES , 2009 .

[23]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .

[24]  Greg Hjorth,et al.  From Automatic Structures to Borel Structures , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[25]  Peter Scheiblechner,et al.  On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety , 2007, J. Complex..

[26]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[27]  Wesley Calvert,et al.  ON THREE NOTIONS OF EFFECTIVE COMPUTATION OVER R , 2008 .