Local integration of population dynamics via moving least squares approximation

This paper applies an approach based on the Galerkin and collocation methods so-called meshless local Petrov–Galerkin (MLPG) method to treat a nonlinear partial integro-differential equation arising in population dynamics. In the proposed method, the MLPG method is applied to the interior nodes while the meshless collocation method is used for the nodes on the boundary, so the Dirichlet boundary condition is imposed directly. In MLPG method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. The moving least squares approximation is proposed to construct shape functions. A one-step time discretization method is employed to approximate the time derivative. To treat the nonlinearity, a simple predictor–corrector scheme is performed. Also the integral term, which is a kind of convolution, is treated by the cubic spline interpolation. Convergence in both time and spatial discretizations is shown and more, stability of the method is illustrated.

[1]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[2]  Elyas Shivanian,et al.  A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis , 2016, J. Comput. Appl. Math..

[3]  Elyas Shivanian,et al.  Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation , 2015 .

[4]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[5]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[6]  Mohammad Shekarchi,et al.  A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs , 2008 .

[7]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[8]  Elyas Shivanian,et al.  Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions , 2015, The European Physical Journal Plus.

[9]  Elyas Shivanian,et al.  A Meshless Method Based on Radial Basis and Spline Interpolation for 2-D and 3-D Inhomogeneous Biharmonic BVPs , 2015 .

[10]  Ronald E. Mickens,et al.  A best finite‐difference scheme for the fisher equation , 1994 .

[11]  Zhang Lei,et al.  An adaptive moving total least squares method for curve fitting , 2014 .

[12]  Vitaly Volpert,et al.  Mathematical model of evolutionary branching , 2009, Math. Comput. Model..

[13]  José Augusto Ferreira,et al.  Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation , 2007 .

[14]  YuanTong Gu,et al.  A boundary point interpolation method for stress analysis of solids , 2002 .

[15]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[16]  Václav Skala,et al.  A two-level approach to implicit surface modeling with compactly supported radial basis functions , 2011, Eng. Comput..

[17]  Mehdi Dehghan,et al.  Space-time spectral method for a weakly singular parabolic partial integro-differential equation on irregular domains , 2014, Comput. Math. Appl..

[18]  Mehdi Dehghan,et al.  An efficient pseudo‐spectral Legendre–Galerkin method for solving a nonlinear partial integro‐differential equation arising in population dynamics , 2013 .

[19]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[20]  Wen Chen,et al.  Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation , 2015 .

[21]  E. Ozturk,et al.  Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions , 2015 .

[22]  Mehdi Dehghan,et al.  A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations , 2014, J. Comput. Appl. Math..

[23]  Vitaly Volpert,et al.  Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources , 2006 .

[24]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[25]  Bath Ba SPATIAL STRUCTURES AND PERIODIC TRAVELLING WAVES IN AN INTEGRO-DIFFERENTIAL REACTION-DIFFUSION POPULATION MODEL* , 1990 .

[26]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[27]  Elyas Shivanian,et al.  A new spectral meshless radial point interpolation (SMRPI) method: A well-behaved alternative to the meshless weak forms , 2015 .

[28]  Mohammad Shekarchi,et al.  A Multiresolution Prewavelet-Based Adaptive Refinement Scheme for RBF Approximations of Nearly Singular Problems , 2009 .

[29]  Bernie D. Shizgal,et al.  A pseudospectral method of solution of Fisher's equation , 2006 .

[30]  Kamel Al-Khaled,et al.  Numerical study of Fisher's reaction–diffusion equation by the Sinc collocation method , 2001 .

[31]  Graham F. Carey,et al.  Least‐squares finite element approximation of Fisher's reaction–diffusion equation , 1995 .

[32]  Mehdi Dehghan,et al.  Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation , 2010 .

[33]  I. Dag,et al.  Numerical investigation of the solution of Fisher's equation via the B‐spline Galerkin method , 2010 .

[34]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[35]  A. G. Bratsos An improved numerical scheme for the sine‐Gordon equation in 2+1 dimensions , 2008 .

[36]  Elyas Shivanian,et al.  Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics , 2013 .

[37]  Benoît Perthame,et al.  Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit , 2007 .

[38]  S. Abbasbandy,et al.  A meshless method for two-dimensional diffusion equation with an integral condition , 2010 .

[39]  Saeid Abbasbandy,et al.  Local integration of 2-D fractional telegraph equation via moving least squares approximation , 2015 .

[40]  Suheil A. Khuri,et al.  A numerical approach for solving an extended Fisher-Kolomogrov-Petrovskii-Piskunov equation , 2010, J. Comput. Appl. Math..

[41]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[42]  YuanTong Gu,et al.  A BOUNDARY RADIAL POINT INTERPOLATION METHOD (BRPIM) FOR 2-D STRUCTURAL ANALYSES , 2003 .

[43]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[44]  Elyas Shivanian,et al.  Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions , 2014 .

[45]  Elyas Shivanian,et al.  Meshless local radial point interpolation to three-dimensional wave equation with Neumann's boundary conditions , 2016, Int. J. Comput. Math..

[46]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[47]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[48]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[49]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations , 2005 .

[50]  Guirong Liu,et al.  Point interpolation method based on local residual formulation using radial basis functions , 2002 .

[51]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[52]  YuanTong Gu,et al.  A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids , 2001 .

[53]  Mehdi Dehghan,et al.  Numerical Solution of System of N–Coupled NonlinearSchrödinger Equations via Two Variants of the MeshlessLocal Petrov–Galerkin (MLPG) Method , 2014 .

[54]  G. Y. Li,et al.  A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation , 2006 .

[55]  Paul W. Cleary,et al.  Modelling confined multi-material heat and mass flows using SPH , 1998 .

[56]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[57]  Vitaly Volpert,et al.  Spatial structures and generalized travelling waves for an integro-differential equation , 2010 .

[58]  K. Bathe,et al.  The method of finite spheres , 2000 .

[59]  Ameneh Taleei,et al.  Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic , 2014 .

[60]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[61]  S. Abbasbandy of MHD ow of third grade uid by means of meshless local radial point interpolation (MLRPI) , 2015 .

[62]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[63]  Elyas Shivanian,et al.  Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem , 2016 .

[64]  Mehdi Dehghan,et al.  A moving least square reproducing polynomial meshless method , 2013 .

[65]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[66]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[67]  Elyas Shivanian,et al.  Spectral meshless radial point interpolation (SMRPI) method to two‐dimensional fractional telegraph equation , 2016 .

[68]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[69]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[70]  E. Shivanian On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three‐dimensional wave equations , 2016 .

[71]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[72]  B. Kooi,et al.  Seasonality, Climate Cycles and Body Size Evolution , 2009 .

[73]  Elyas Shivanian,et al.  Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations , 2014 .