Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release

[1]  George J. Augustine,et al.  Synaptotagmin I Synchronizes Transmitter Release in Mouse Hippocampal Neurons , 2004, The Journal of Neuroscience.

[2]  V. Shahrezaei,et al.  Competition between Phasic and Asynchronous Release for Recovered Synaptic Vesicles at Developing Hippocampal Autaptic Synapses , 2022 .

[3]  T. Südhof,et al.  Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+ , 2003, The Journal of general physiology.

[4]  Y. Goda,et al.  Synaptotagmin in Ca2+-Dependent Exocytosis Dynamic Action in a Flash , 2003, Neuron.

[5]  S. Kirischuk,et al.  Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures , 2003, The Journal of physiology.

[6]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[7]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[8]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[9]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[10]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[11]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[12]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Hagler,et al.  Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. , 2001, Journal of neurophysiology.

[14]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[15]  J. Lambert,et al.  Tetanus-induced asynchronous GABA release in cultured hippocampal neurons , 2000, Brain Research.

[16]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[17]  R. Tsien,et al.  Activity-dependent regulation of synaptic clustering in a hippocampal culture system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Regehr,et al.  Delayed Release of Neurotransmitter from Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[19]  M. Dichter,et al.  Calcium-dependent Paired-pulse Facilitation of Miniature Epsc Frequency Accompanies Depression of Epscs at Hippocampal Synapses in Culture , 1996 .

[20]  R. Llinás,et al.  The concept of calcium concentration microdomains in synaptic transmission , 1995, Neuropharmacology.

[21]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[23]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[24]  T. Schwarz,et al.  Synaptic transmission persists in synaptotagmin mutants of Drosophila , 1993, Cell.

[25]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[26]  T. Südhof,et al.  Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. , 1991, The Journal of biological chemistry.

[27]  C. Stevens,et al.  The kinetics of transmitter release at the frog neuromuscular junction , 1972, The Journal of physiology.