On the Expressive Power of GF(2)-Grammars

GF(2)-grammars, recently introduced by Bakinova et al. (“Formal languages over GF(2)”, LATA 2018), are a variant of ordinary context-free grammars, in which the disjunction is replaced by exclusive OR, whereas the classical concatenation is replaced by a new operation called GF(2)-concatenation: \(K \odot L\) is the set of all strings with an odd number of partitions into a concatenation of a string in K and a string in L. This paper establishes several results on the family of languages defined by these grammars. Over the unary alphabet, GF(2)-grammars define exactly the 2-automatic sets. No language of the form \(\{a^n b^{f(n)} \,\mid \, n \geqslant 1\}\), with uniformly superlinear f, can be described by any GF(2)-grammar. The family is not closed under union, intersection, classical concatenation and Kleene star, non-erasing homomorphisms. On the other hand, this family is closed under injective nondeterministic finite transductions, and contains a hardest language under reductions by homomorphisms.

[1]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[2]  Seymour Ginsburg,et al.  Quotients of Context-Free Languages , 1963, JACM.

[3]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[4]  I. Petre,et al.  Algebraic Systems and Pushdown Automata , 2009 .

[5]  Alexander Okhotin,et al.  Underlying Principles and Recurring Ideas of Formal Grammars , 2018, LATA.

[6]  Alexander Okhotin,et al.  An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..

[7]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[8]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[9]  Martin Kutrib,et al.  On time computability of functions in one-way cellular automata , 1998, Acta Informatica.

[10]  Alexander Okhotin,et al.  Formal Languages over GF(2) , 2018, LATA.

[11]  Alexander Okhotin,et al.  Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..

[12]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[13]  Gilles Christol,et al.  Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..

[14]  Tadao Kasami,et al.  On Multiple Context-Free Grammars , 1991, Theor. Comput. Sci..

[15]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[16]  Véronique Terrier,et al.  On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..

[17]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[18]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[19]  Donald E. Knuth,et al.  Context-Free Multilanguages , 1991, Theoretical Studies in Computer Science.

[20]  Alexander Okhotin,et al.  Input-driven languages are linear conjunctive , 2016, Theor. Comput. Sci..

[21]  James Worrell,et al.  Language equivalence of probabilistic pushdown automata , 2014, Inf. Comput..