Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

[1]  Wei Zhou,et al.  Programmable soft lithography: solvent-assisted nanoscale embossing. , 2011, Nano letters.

[2]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[3]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[4]  Yong-Hee Lee,et al.  One-dimensional metal nanowire assembly via block copolymer soft graphoepitaxy. , 2010, Nano letters.

[5]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[6]  Bong Hoon Kim,et al.  Flexible and Transferrable Self‐Assembled Nanopatterning on Chemically Modified Graphene , 2013, Advanced materials.

[7]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[9]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[10]  D. Sanders,et al.  Advances in patterning materials for 193 nm immersion lithography. , 2010, Chemical reviews.

[11]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[12]  Tom G. Mackay,et al.  On the effective permittivity of silver-insulator nanocomposites , 2006 .

[13]  C. Hawker,et al.  Controlling Polymer-Surface Interactions with Random Copolymer Brushes , 1997, Science.

[14]  Glenn H. Fredrickson,et al.  Dynamics of Block Copolymers: Theory and Experiment , 1996 .

[15]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[16]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[17]  G. Kang,et al.  Transparent dielectric nanostructures for efficient light management in optoelectronic applications , 2015 .

[18]  Vladimir M. Shalaev,et al.  Plasmonics Goes Quantum , 2011, Science.

[19]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[20]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[21]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[22]  Jonghwa Shin,et al.  Optical effective media with independent control of permittivity and permeability based on conductive particles , 2016 .

[23]  Xiaolin Wang,et al.  Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index , 2016, Science Advances.

[24]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[25]  Shin‐Tson Wu,et al.  Super High Birefringence Isothiocyanato Biphenyl-Bistolane Liquid Crystals , 2004 .

[26]  Shuichi Kinoshita,et al.  Direct determination of the refractive index of natural multilayer systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  D. Smith,et al.  Gradient index metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Shanhui Fan,et al.  Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth. , 2009, Physical review letters.

[29]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[30]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.

[31]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[32]  R. Ruiz,et al.  Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly , 2008, Science.

[33]  Zi Jing Wong,et al.  Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials , 2013, Science.

[34]  Eric I Corwin,et al.  Kinetically driven self assembly of highly ordered nanoparticle monolayers , 2006, Nature materials.

[35]  J. Aizpurua,et al.  Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities , 2014, ACS nano.

[36]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[37]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[38]  J. Baumberg,et al.  Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials , 2015 .

[39]  J. Baumberg,et al.  A 3D Optical Metamaterial Made by Self‐Assembly , 2012, Advanced materials.

[40]  Zhongfan Liu,et al.  Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. , 2008, Journal of the American Chemical Society.

[41]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .

[42]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[43]  D. A. G. Bruggeman Berechnung Verschiederner Physikalischer Konstante von Heterogenen Substanzan , 1935 .

[44]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[45]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[46]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[47]  J. Baumberg,et al.  Tunable 3D Extended Self‐Assembled Gold Metamaterials with Enhanced Light Transmission , 2013, Advanced materials.

[48]  R. Merlin Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism , 2009, Proceedings of the National Academy of Sciences.

[49]  Craig J. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[50]  C. Kittel Introduction to solid state physics , 1954 .

[51]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[52]  E. Kramer,et al.  Graphoepitaxy of Spherical Domain Block Copolymer Films , 2001 .

[53]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[54]  Bodo D Wilts,et al.  Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. , 2011, Optics express.

[55]  E. Sacher,et al.  Surface diffusion and coalescence of mobile metal nanoparticles. , 2005, The journal of physical chemistry. B.

[56]  S. Foteinopoulou Photonic crystals as metamaterials , 2012, 2006.07536.

[57]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[58]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[59]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.