About the frequencies of some patterns in digital planes. Application to area estimators

In this paper, we prove that the function giving the frequency of a class of patterns of digital planes with respect to the slopes of the plane is continuous and piecewise affine, moreover the regions of affinity are specified. It allows to prove some combinatorial properties of a class of patterns called (m,n)-cubes. This study has also some consequences on local estimators of area: we prove that the local estimators restricted to regions of plane never converge to the exact area when the resolution tends to zero for almost all slopes of plane. All the results are generalized for the regions of hyperplanes in any dimension d>=3.

[1]  Reinhard Klette,et al.  Surface area estimation for digitized regular solids , 2000, SPIE Optics + Photonics.

[2]  Mohamed Tajine,et al.  On Local Definitions of Length of Digital Curves , 2003, DGCI.

[3]  C. A. Berenstein,et al.  On the Number of Digital Straight Line Segments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Mohamed Tajine Digital Segments and Hausdorff Discretization , 2008, IWCIA.

[5]  Joëlle Vittone Caractérisation et reconnaissance de droites et de plans en géométrie discrète , 1999 .

[6]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[7]  Reinhard Klette,et al.  Digital planarity - A review , 2007, Discret. Appl. Math..

[8]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[9]  Joakim Lindblad,et al.  Surface area estimation of digitized 3D objects using weighted local configurations , 2005, Image Vis. Comput..

[10]  James F. Geelen,et al.  A two dimensional Steinhaus theorem , 1993, Australas. J Comb..

[11]  Jean-Maurice Schramm,et al.  Coplanar Tricubes , 1997, DGCI.

[12]  Søren Forchhammer,et al.  Digital plane and grid point segments , 1989, Comput. Vis. Graph. Image Process..

[13]  Valérie Berthé,et al.  Frequencies of Sturmian series factors , 1996 .

[14]  Jean-Pierre Reveilles,et al.  Combinatorial pieces in digital lines and planes , 1995, Optics & Photonics.

[15]  Laurent Vuillon Local configurations in a discrete plane , 1999 .

[16]  Jean-Marc Chassery,et al.  Digital plane preimage structure , 2003, Electron. Notes Discret. Math..

[17]  Valérie Berthé,et al.  Fréquences des facteurs des suites sturmiennes , 1996, Theor. Comput. Sci..

[18]  Nicolas Chevallier Three distance theorem and grid graph , 2000, Discret. Math..

[19]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[20]  Mohamed Tajine,et al.  About the Frequencies of Some Patterns in Digital Planes Application to Area Estimators , 2008, DGCI.

[21]  Mohamed Tajine,et al.  Recognizing arithmetic straight lines and planes , 1996, DGCI.

[22]  Christophe Fiorio,et al.  On some applications of generalized functionality for arithmetic discrete planes , 2007, Image Vis. Comput..