Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed.

Inactivation of selected neurons in vivo can define their contribution to specific developmental outcomes, circuit functions, and behaviors. Here, we show that the optogenetic tool KillerRed selectively, rapidly, and permanently inactivates different classes of neurons in C. elegans in response to a single light stimulus, through the generation of reactive oxygen species (ROS). Ablation scales from individual neurons in single animals to multiple neurons in populations and can be applied to freely behaving animals. Using spatially restricted illumination, we demonstrate that localized KillerRed activation in either the cell body or the axon triggers neuronal degeneration and death of the targeted cell. Finally, targeting KillerRed to mitochondria results in organelle fragmentation without killing the cell, in contrast to the cell death observed when KillerRed is targeted to the plasma membrane. We expect this genetic tool to have wide-ranging applications in studies of circuit function and subcellular responses to ROS.

[1]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[2]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[3]  Cori Bargmann,et al.  The Netrin Receptor UNC-40/DCC Stimulates Axon Attraction and Outgrowth through Enabled and, in Parallel, Rac and UNC-115/AbLIM , 2003, Neuron.

[4]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  Á. Catala A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. , 2010, Biochemical and biophysical research communications.

[6]  M. Field,et al.  Diffusion pathways of oxygen species in the phototoxic fluorescent protein Killer Red , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[7]  Leon Avery,et al.  A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant , 1987, Cell.

[8]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[9]  D. Hall,et al.  Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[11]  S. Lukyanov,et al.  Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics , 2010, BMC Developmental Biology.

[12]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[13]  K. Mihara,et al.  Characterization of the Signal That Directs Tom20 to the Mitochondrial Outer Membrane , 2000, The Journal of cell biology.

[14]  Robert A. Smith,et al.  Oxidative stress in neurodegeneration and available means of protection. , 2008, Frontiers in bioscience : a journal and virtual library.

[15]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[16]  J. Tower,et al.  Superoxide dismutase evolution and life span regulation , 2005, Mechanisms of Ageing and Development.

[17]  Aravinthan D. T. Samuel,et al.  Laser microsurgery in Caenorhabditis elegans. , 2012, Methods in cell biology.

[18]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Paolo Zamboni,et al.  Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options , 2009, Current neuropharmacology.

[20]  Paul M. Sharp,et al.  Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases , 1994, Nucleic Acids Res..

[21]  D. Hall,et al.  Neuropathology of Degenerative Cell Death in Caenorhabditis elegans , 1997, The Journal of Neuroscience.

[22]  J. Rand Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. , 1989, Genetics.

[23]  M. Mattson,et al.  Impairment of Glucose and Glutamate Transport and Induction of Mitochondrial Oxidative Stress and Dysfunction in Synaptosomes by Amyloid β‐Peptide: Role of the Lipid Peroxidation Product 4‐Hydroxynonenal , 1997, Journal of neurochemistry.

[24]  A. Wlodawer,et al.  Structural Basis for Phototoxicity of the Genetically Encoded Photosensitizer KillerRed* , 2009, The Journal of Biological Chemistry.

[25]  D. Bourgeois,et al.  Structural basis for the phototoxicity of the fluorescent protein KillerRed , 2009, FEBS letters.

[26]  Roger Y. Tsien,et al.  Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG , 2012, Proceedings of the National Academy of Sciences.

[27]  S. Dimauro,et al.  Mitochondrial disorders in the nervous system. , 2008, Annual review of neuroscience.

[28]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[29]  S. Edwards,et al.  A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans , 2008, PLoS biology.

[30]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[31]  K. Lukyanov,et al.  Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein , 2009, Proceedings of the National Academy of Sciences.

[32]  A. Fire,et al.  A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. , 1990, Gene.

[33]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[34]  L. Avery,et al.  Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans , 1989, Neuron.

[35]  Robert A. Smith,et al.  5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones , 2009, Neurotoxicity Research.

[36]  K. Mihara,et al.  An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. , 2008, Journal of biochemistry.

[37]  M. Mattson,et al.  Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Erik M. Jorgensen,et al.  Targeted gene deletions in C. elegans using transposon excision , 2010, Nature Methods.

[39]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[40]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[41]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[42]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[43]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[44]  S. Takagi,et al.  Optical Silencing of C. elegans Cells with Arch Proton Pump , 2012, PloS one.

[45]  Colin L. Masters,et al.  Neurodegenerative diseases and oxidative stress , 2004, Nature Reviews Drug Discovery.