The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics

SUMMARY The finite cell method (FCM) combines the fictitious domain approach with the p-version of the finite element method and adaptive integration. For problems of linear elasticity, it offers high convergence rates and simple mesh generation, irrespective of the geometric complexity involved. This article presents the integration of the FCM into the framework of nonlinear finite element technology. However, the penalty parameter of the fictitious domain is restricted to a few orders of magnitude in order to maintain local uniqueness of the deformation map. As a consequence of the weak penalization, nonlinear strain measures provoke excessive stress oscillations in the cells cut by geometric boundaries, leading to a low algebraic rate of convergence. Therefore, the FCM approach is complemented by a local overlay of linear hierarchical basis functions in the sense of the hp-d method, which synergetically uses the h-adaptivity of the integration scheme. Numerical experiments show that the hp-d overlay effectively reduces oscillations and permits stronger penalization of the fictitious domain by stabilizing the deformation map. The hp-d-adaptive FCM is thus able to restore high convergence rates for the geometrically nonlinear case, while preserving the easy meshing property of the original FCM. Accuracy and performance of the present scheme are demonstrated by several benchmark problems in one, two, and three dimensions and the nonlinear simulation of a complex foam sample. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Karl Kunisch,et al.  Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type , 2003, Comput. Optim. Appl..

[2]  Ernst Rank,et al.  Finite cell method , 2007 .

[3]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[4]  Ernst Rank,et al.  p-FEM applied to finite isotropic hyperelastic bodies , 2003 .

[5]  Ernst Rank,et al.  The Finite Cell Method: High order simulation of complex structures without meshing , 2009 .

[6]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[7]  Rainald Löhner,et al.  Adaptive embedded and immersed unstructured grid techniques , 2008 .

[8]  Peter Wriggers,et al.  A note on finite‐element implementation of pressure boundary loading , 1991 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  Ernst Rank,et al.  Applying the hp–d version of the FEM to locally enhance dimensionally reduced models , 2007 .

[11]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[12]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[13]  Ernst Rank,et al.  An rp-adaptive finite element method for the deformation theory of plasticity , 2007 .

[14]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[15]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[16]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[17]  Adnan Ibrahimbegovic,et al.  A consistent finite element formulation of nonlinear membrane shell theory with particular reference to elastic rubberlike material , 1993 .

[18]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[19]  E. Rank,et al.  hp‐Version finite elements for geometrically non‐linear problems , 1995 .

[20]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[21]  D. P. Mok,et al.  Algorithmic aspects of deformation dependent loads in non‐linear static finite element analysis , 1999 .

[22]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[23]  Joseph E. Bishop,et al.  Rapid stress analysis of geometrically complex domains using implicit meshing , 2003 .

[24]  Peter Hansbo,et al.  A hierarchical NXFEM for fictitious domain simulations , 2011 .

[25]  P. N. Godbole Introduction to Finite Element Methods , 2013 .

[26]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[27]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[28]  Valentino Pediroda,et al.  Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow , 2009, J. Comput. Phys..

[29]  Manil Suri,et al.  ON THE SELECTION OF A LOCKING‐FREE hp ELEMENT FOR ELASTICITY PROBLEMS , 1997 .

[30]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[31]  Peter Wriggers,et al.  Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .

[32]  S. Dong,et al.  A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems , 2009 .

[33]  Ernst Rank,et al.  Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .

[34]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[35]  E. Rank,et al.  Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM , 2007 .

[36]  A. Öchsner,et al.  Computed tomography based finite element analysis of the thermal properties of cellular aluminium , 2009 .

[37]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[38]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[39]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[40]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[41]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[42]  Adnan Ibrahimbegovic,et al.  Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods , 2009 .

[43]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[44]  Ekkehard Ramm,et al.  Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .

[45]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[46]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[47]  Manil Suri,et al.  Analytical and computational assessment of locking in the hp finite element method , 1996 .

[48]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[49]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[50]  Z. Yosibash,et al.  On volumetric locking‐free behaviour of p‐version finite elements under finite deformations , 2007 .

[51]  Ernst Rank,et al.  An rp-adaptive finite element method for elastoplastic problems , 2004 .

[52]  S. H. Lui,et al.  Spectral domain embedding for elliptic PDEs in complex domains , 2009 .

[53]  E. Rank,et al.  Numerical investigations of foam-like materials by nested high-order finite element methods , 2009 .

[54]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[55]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[56]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[57]  K. Bathe Finite Element Procedures , 1995 .

[58]  Ernst Rank,et al.  Multiscale computations with a combination of the h- and p-versions of the finite-element method , 2003 .

[60]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[61]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[62]  Ulrich Heisserer,et al.  High-order finite elements for material and geometric nonlinear finite strain problems , 2008 .

[63]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[64]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[65]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[66]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[67]  Spencer J. Sherwin,et al.  A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .

[68]  Charbel Farhat,et al.  A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions , 2002 .

[69]  L. Joskowicz,et al.  A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. , 2007, Journal of biomechanical engineering.

[70]  E. Rank,et al.  Topology optimization using the finite cell method , 2012 .

[71]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[72]  C. Engwer,et al.  An unfitted finite element method using discontinuous Galerkin , 2009 .

[73]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[74]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .