Constructing neural stationary states for open quantum many-body systems

We propose a new variational scheme based on the neural-network quantum states to simulate the stationary states of open quantum many-body systems. Using the high expressive power of the variational ansatz described by the restricted Boltzmann machines, which we dub as the neural stationary state ansatz, we compute the stationary states of quantum dynamics obeying the Lindblad master equations. The mapping of the stationary-state search problem into finding a zero-energy ground state of an appropriate Hermitian operator allows us to apply the conventional variational Monte Carlo method for the optimization. Our method is shown to simulate various spin systems efficiently, i.e., the transverse-field Ising models in both one and two dimensions and the XYZ model in one dimension.

[1]  Andrea Micheli,et al.  Dynamical phase transitions and instabilities in open atomic many-body systems. , 2010, Physical review letters.

[2]  Peter Zoller,et al.  Nonequilibrium phase diagram of a driven and dissipative many-body system , 2010, 1011.3207.

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  J. P. Garrahan,et al.  Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems. , 2018, Physical review letters.

[5]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[6]  Ryusuke Hamazaki,et al.  Discrete Time-Crystalline Order in Cavity and Circuit QED Systems. , 2017, Physical review letters.

[7]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[8]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[9]  Mikhail D Lukin,et al.  Unconventional magnetism via optical pumping of interacting spin systems. , 2013, Physical review letters.

[10]  Ye-Hua Liu,et al.  Discriminative Cooperative Networks for Detecting Phase Transitions. , 2017, Physical review letters.

[11]  Alexandra Nagy,et al.  Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. , 2019, Physical review letters.

[12]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[13]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[14]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[15]  Lei Wang,et al.  Exploring cluster Monte Carlo updates with Boltzmann machines. , 2017, Physical review. E.

[16]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[17]  J. Ignacio Cirac,et al.  Noise-driven dynamics and phase transitions in fermionic systems , 2012, 1207.1653.

[18]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[19]  G. Carleo,et al.  Symmetries and Many-Body Excitations with Neural-Network Quantum States. , 2018, Physical review letters.

[20]  Hendrik Weimer,et al.  A simple tensor network algorithm for two-dimensional steady states , 2016, Nature Communications.

[21]  Shun-ichi Amari,et al.  Information geometry of Boltzmann machines , 1992, IEEE Trans. Neural Networks.

[22]  Giacomo Torlai,et al.  Latent Space Purification via Neural Density Operators. , 2018, Physical review letters.

[23]  P. Zoller,et al.  Topology by dissipation , 2013, 1302.5135.

[24]  Zi Cai,et al.  Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems. , 2013, Physical review letters.

[25]  Rosario Fazio,et al.  Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems , 2016, 1602.06553.

[26]  Pengfei Zhang,et al.  Machine Learning Topological Invariants with Neural Networks , 2017, Physical review letters.

[27]  Nobuyuki Yoshioka,et al.  Learning disordered topological phases by statistical recovery of symmetry , 2017, 1709.05790.

[28]  Hiroki Saito,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2017, 1709.05468.

[29]  Tomaz Prosen,et al.  Comments on a boundary-driven open XXZ chain: asymmetric driving and uniqueness of steady states , 2012, 1205.3126.

[30]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[31]  Saito Hiroki,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2018 .

[32]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[33]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[34]  Michael J. Hartmann,et al.  Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. , 2019, Physical review letters.

[35]  Cristiano Ciuti,et al.  Phase diagram of the dissipative quantum Ising model on a square lattice , 2018, Physical Review B.

[36]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[37]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[38]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[39]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[40]  Titus Neupert,et al.  Probing many-body localization with neural networks , 2017, 1704.01578.

[41]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[42]  Ying-Jer Kao,et al.  Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution. , 2016, Physical review letters.

[43]  H. Weimer Variational principle for steady states of dissipative quantum many-body systems. , 2014, Physical review letters.

[44]  Raphael Kaubruegger,et al.  Chiral topological phases from artificial neural networks , 2017, 1710.04713.

[45]  Herwig Ott,et al.  Bistability in a Driven-Dissipative Superfluid. , 2016, Physical review letters.

[46]  Liang Fu,et al.  Self-learning Monte Carlo with deep neural networks , 2018, Physical Review B.

[47]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[48]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[49]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[50]  Tomaz Prosen,et al.  Operator space entanglement entropy in a transverse Ising chain , 2007, 0706.2480.

[51]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[52]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[53]  Nobuyuki Yoshioka,et al.  Transforming generalized Ising models into Boltzmann machines. , 2018, Physical review. E.

[54]  S. Sorella Generalized Lanczos algorithm for variational quantum Monte Carlo , 2000, cond-mat/0009149.

[55]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[56]  J. P. Garrahan,et al.  Dynamical phases and intermittency of the dissipative quantum Ising model , 2011, 1112.4273.

[57]  G. Barontini,et al.  Controlling the dynamics of an open many-body quantum system with localized dissipation. , 2012, Physical review letters.

[58]  H. Saito Solving the Bose–Hubbard Model with Machine Learning , 2017, 1707.09723.

[59]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[60]  J. Cirac,et al.  Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems. , 2015, Physical review letters.

[61]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[62]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[63]  N. Regnault,et al.  Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. , 2019, Physical review letters.

[64]  Wenjian Hu,et al.  Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination. , 2017, Physical review. E.

[65]  Shuta Nakajima,et al.  Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system , 2017, Science Advances.

[66]  Tomaz Prosen,et al.  Operator space entanglement entropy in XY spin chains , 2009, 0903.2432.

[67]  Amnon Shashua,et al.  Quantum Entanglement in Deep Learning Architectures. , 2018, Physical review letters.

[68]  Zach DeVito,et al.  Opt , 2017 .

[69]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[70]  A. H. Werner,et al.  Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. , 2014, Physical review letters.