Area law for fixed points of rapidly mixing dissipative quantum systems

We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure, or the system is frustration free.

[1]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[2]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[3]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics , 2011, 1103.1122.

[4]  Derek W. Robinson,et al.  Statistical mechanics of quantum spin systems. III , 1968 .

[5]  M. B. Hastings,et al.  Locality in Quantum Systems , 2010, 1008.5137.

[6]  Michael M. Wolf,et al.  A cutoff phenomenon for quantum Markov chains , 2011, 1111.2123.

[7]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[8]  F. Martinelli,et al.  For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .

[9]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[10]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Derek W. Robinson,et al.  Statistical mechanics of quantum spin systems. II , 1968 .

[12]  Nobuo Yoshida,et al.  The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice☆ , 2001 .

[13]  K. Temme,et al.  Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.

[14]  David Perez-Garcia,et al.  Stability of Local Quantum Dissipative Systems , 2013, 1303.4744.

[15]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[16]  Derek W. Robinson,et al.  Statistical mechanics of quantum spin systems , 1967 .

[17]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[18]  Allan Sly,et al.  Cutoff for the Ising model on the lattice , 2009, 0909.4320.

[19]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[20]  U. Vazirani,et al.  Improved one-dimensional area law for frustration-free systems , 2011, 1111.2970.

[21]  S. Michalakis,et al.  Stability of the Area Law for the Entropy of Entanglement , 2012, 1206.6900.

[22]  O. Gühne,et al.  Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.

[23]  John McGreevy,et al.  Area Law for Gapless States from Local Entanglement Thermodynamics , 2015, 1505.07106.

[24]  Leonard Gross,et al.  Chapter Two. Hypercontractivity, Logarithmic Sobolev Inequalities, and Applications: A Survey of Surveys , 2006 .

[25]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[26]  Lluis Masanes,et al.  Area law for the entropy of low-energy states , 2009, 0907.4672.

[27]  David Poulin,et al.  Lieb-Robinson bound and locality for general markovian quantum dynamics. , 2010, Physical review letters.

[28]  Jens Eisert,et al.  Rapid mixing implies exponential decay of correlations , 2013, 1303.6304.

[29]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[32]  William G. Faris Diffusion, quantum theory, and radically elementary mathematics , 2006 .

[33]  Michael M. Wolf,et al.  Spectral Convergence Bounds for Classical and Quantum Markov Processes , 2013, 1301.4827.

[34]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[35]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[36]  Frank Verstraete,et al.  Entanglement Rates and the Stability of the Area Law for the Entanglement Entropy , 2014, 1411.0680.

[37]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[38]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[39]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[40]  Fernando G. S. L. Brandão,et al.  Quantum Gibbs Samplers: The Commuting Case , 2014, Communications in Mathematical Physics.

[41]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[42]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[43]  L. Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .

[44]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[45]  F. Verstraete,et al.  Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation , 2008, 0803.1447.

[46]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[47]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.