暂无分享,去创建一个
David Pérez-García | Angelo Lucia | Fernando G. S. L. Brandão | Toby S. Cubitt | Spyridon Michalakis | F. Brandão | D. Pérez-García | T. Cubitt | A. Lucia | S. Michalakis
[1] P. Zoller,et al. Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.
[2] D. W. Robinson,et al. The finite group velocity of quantum spin systems , 1972 .
[3] Bruno Nachtergaele,et al. Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics , 2011, 1103.1122.
[4] Derek W. Robinson,et al. Statistical mechanics of quantum spin systems. III , 1968 .
[5] M. B. Hastings,et al. Locality in Quantum Systems , 2010, 1008.5137.
[6] Michael M. Wolf,et al. A cutoff phenomenon for quantum Markov chains , 2011, 1111.2123.
[7] Dimitri Gioev,et al. Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.
[8] F. Martinelli,et al. For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .
[9] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[10] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[11] Derek W. Robinson,et al. Statistical mechanics of quantum spin systems. II , 1968 .
[12] Nobuo Yoshida,et al. The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice☆ , 2001 .
[13] K. Temme,et al. Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.
[14] David Perez-Garcia,et al. Stability of Local Quantum Dissipative Systems , 2013, 1303.4744.
[15] R. Xu,et al. Theory of open quantum systems , 2002 .
[16] Derek W. Robinson,et al. Statistical mechanics of quantum spin systems , 1967 .
[17] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[18] Allan Sly,et al. Cutoff for the Ising model on the lattice , 2009, 0909.4320.
[19] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[20] U. Vazirani,et al. Improved one-dimensional area law for frustration-free systems , 2011, 1111.2970.
[21] S. Michalakis,et al. Stability of the Area Law for the Entropy of Entanglement , 2012, 1206.6900.
[22] O. Gühne,et al. Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.
[23] John McGreevy,et al. Area Law for Gapless States from Local Entanglement Thermodynamics , 2015, 1505.07106.
[24] Leonard Gross,et al. Chapter Two. Hypercontractivity, Logarithmic Sobolev Inequalities, and Applications: A Survey of Surveys , 2006 .
[25] J Eisert,et al. Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.
[26] Lluis Masanes,et al. Area law for the entropy of low-energy states , 2009, 0907.4672.
[27] David Poulin,et al. Lieb-Robinson bound and locality for general markovian quantum dynamics. , 2010, Physical review letters.
[28] Jens Eisert,et al. Rapid mixing implies exponential decay of correlations , 2013, 1303.6304.
[29] F. Verstraete,et al. Quantum computation and quantum-state engineering driven by dissipation , 2009 .
[30] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[31] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[32] William G. Faris. Diffusion, quantum theory, and radically elementary mathematics , 2006 .
[33] Michael M. Wolf,et al. Spectral Convergence Bounds for Classical and Quantum Markov Processes , 2013, 1301.4827.
[34] Justyna P. Zwolak,et al. Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.
[35] Fernando G. S. L. Brandão,et al. Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.
[36] Frank Verstraete,et al. Entanglement Rates and the Stability of the Area Law for the Entanglement Entropy , 2014, 1411.0680.
[37] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[38] Michael M Wolf. Violation of the entropic area law for fermions. , 2006, Physical review letters.
[39] M. Hastings,et al. An area law for one-dimensional quantum systems , 2007, 0705.2024.
[40] Fernando G. S. L. Brandão,et al. Quantum Gibbs Samplers: The Commuting Case , 2014, Communications in Mathematical Physics.
[41] Umesh Vazirani,et al. An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.
[42] Matthew B Hastings,et al. Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.
[43] L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .
[44] M. Fannes. A continuity property of the entropy density for spin lattice systems , 1973 .
[45] F. Verstraete,et al. Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation , 2008, 0803.1447.
[46] K. Audenaert. A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.
[47] Christine A Muschik,et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.