Sampling-based algorithms for optimal motion planning

During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

[1]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[7]  Herbert Edelsbrunner,et al.  On the Intersection of Orthogonal Objects , 1981, Inf. Process. Lett..

[8]  G. Grimmett,et al.  Probability and random processes , 2002 .

[9]  Derick Wood,et al.  Counting and Reporting Intersections of d-Ranges , 1982, IEEE Transactions on Computers.

[10]  J. Schwartz,et al.  Efficient Detection of Intersections among Spheres , 1983 .

[11]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  N. Henze On the fraction of random points by specified nearest-neighbour interrelations and degree of attraction , 1987, Advances in Applied Probability.

[15]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[16]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[17]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[18]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[19]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[21]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[22]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[23]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[24]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[25]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[26]  Gary A. Talbot Applications of Percolation Theory , 1995 .

[27]  Sunil Arya,et al.  Approximate range searching , 1995, SCG '95.

[28]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[29]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[30]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[31]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[32]  David Eppstein,et al.  On Nearest-Neighbor Graphs , 1992, ICALP.

[33]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[34]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[35]  S. Resnick A Probability Path , 1999 .

[36]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[37]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[38]  Lydia E. Kavraki,et al.  Computational Approaches to Drug Design , 1999, Algorithmica.

[39]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[40]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[41]  Neil C. Rowe,et al.  Finding Optimal-Path Maps for Path Planning across Weighted Regions , 2000, Int. J. Robotics Res..

[42]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[43]  Joshua A. Levine,et al.  Sampling-based planning, control and verification of hybrid systems , 2000 .

[44]  J. Quintanilla,et al.  Efficient measurement of the percolation threshold for fully penetrable discs , 2000 .

[45]  Steven M. LaValle,et al.  Quasi-randomized path planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[46]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[47]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[48]  Luc Devroye,et al.  Analysis of range search for random k-d trees , 2001, Acta Informatica.

[49]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[50]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Manuela M. Veloso,et al.  Real-time randomized path planning for robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[53]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[54]  Manuela M. Veloso,et al.  Real-Time Randomized Path Planning for Robot Navigation , 2002, RoboCup.

[55]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[56]  Steven M. LaValle,et al.  Current Issues in Sampling-Based Motion Planning , 2005, ISRR.

[57]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[58]  Michael M. Curtiss,et al.  RRTs for nonlinear, discrete, and hybrid planning and control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[59]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[60]  Norman I. Badler,et al.  Real-time reach planning for animated characters using hardware acceleration , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[61]  Lydia E. Kavraki,et al.  Measure theoretic analysis of probabilistic path planning , 2004, IEEE Transactions on Robotics and Automation.

[62]  Panganamala Ramana Kumar,et al.  The Number of Neighbors Needed for Connectivity of Wireless Networks , 2004, Wirel. Networks.

[63]  Emilio Frazzoli,et al.  Incremental Search Methods for Reachability Analysis of Continuous and Hybrid Systems , 2004, HSCC.

[64]  Chak-Kuen Wong,et al.  Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees , 1977, Acta Informatica.

[65]  Dinesh Manocha,et al.  Collision and Proximity Queries , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[66]  Kostas E. Bekris,et al.  Sampling-based roadmap of trees for parallel motion planning , 2005, IEEE Transactions on Robotics.

[67]  B. Bollobás,et al.  Connectivity of random k-nearest-neighbour graphs , 2005, Advances in Applied Probability.

[68]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[69]  Sunil Arya,et al.  Space-time tradeoffs for approximate spherical range counting , 2005, SODA '05.

[70]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[71]  Anthony Stentz,et al.  Anytime RRTs , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Daniel F. Huber,et al.  Automatic Three-dimensional Underground Mine Mapping , 2006, Int. J. Robotics Res..

[73]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[74]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[75]  Lydia E. Kavraki,et al.  Quantitative Analysis of Nearest-Neighbors Search in High-Dimensional Sampling-Based Motion Planning , 2006, WAFR.

[76]  G. Swaminathan Robot Motion Planning , 2006 .

[77]  Steven M. LaValle,et al.  Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching , 2007, IEEE Transactions on Robotics.

[78]  Thierry Siméon,et al.  Molecular Disassembly With Rrt-Like Algorithms , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[79]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[80]  A. Wade Explicit laws of large numbers for random nearest-neighbour-type graphs , 2006, Advances in Applied Probability.

[81]  Tamim Asfour,et al.  Manipulation Planning Among Movable Obstacles , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[82]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[83]  M. Branicky,et al.  On Heavy-tailed Runtimes and Restarts in Rapidly-exploring Random Trees , 2008 .

[84]  Dmitry Berenson,et al.  An optimization approach to planning for mobile manipulation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[85]  B. Bollobás,et al.  Percolation, Connectivity, Coverage and Colouring of Random Geometric Graphs , 2008 .

[86]  Maxim Likhachev,et al.  Planning Long Dynamically-Feasible Maneuvers For Autonomous Vehicles , 2008, Robotics: Science and Systems.

[87]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[88]  Sebastian Thrun,et al.  Path Planning for Autonomous Driving in Unknown Environments , 2008, ISER.

[89]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[90]  I. Balberg Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[91]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[92]  A. Wade Asymptotic theory for the multidimensional random on-line nearest-neighbour graph , 2007, math/0702414.

[93]  Steven M. LaValle,et al.  Motion Planning for Highly Constrained Spaces , 2009 .

[94]  B. Bollobás,et al.  A critical constant for the k nearest-neighbour model , 2007, Advances in Applied Probability.

[95]  S. LaValle,et al.  Space-Filling Trees , 2009 .

[96]  N. Roy,et al.  The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance , 2009, Int. J. Robotics Res..

[97]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[98]  Jonathan P. How,et al.  Real-Time Motion Planning With Applications to Autonomous Urban Driving , 2009, IEEE Transactions on Control Systems Technology.

[99]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[100]  Dan Halperin,et al.  Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners , 2010, WAFR.

[101]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[102]  Tara N. Sainath,et al.  A voice-commandable robotic forklift working alongside humans in minimally-prepared outdoor environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[103]  Emilio Frazzoli,et al.  Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games , 2010, WAFR.

[104]  Gökhan Inalhan,et al.  Integration of Path/Maneuver Planning in Complex Environments for Agile Maneuvering UCAVs , 2010, J. Intell. Robotic Syst..

[105]  Emilio Frazzoli,et al.  Bounds on tracking error using closed-loop rapidly-exploring random trees , 2010, Proceedings of the 2010 American Control Conference.

[106]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[107]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[108]  Ron Alterovitz,et al.  Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[109]  Ian R. Manchester,et al.  Bounding on rough terrain with the LittleDog robot , 2011, Int. J. Robotics Res..

[110]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[111]  Siddhartha S. Srinivasa,et al.  Addressing cost-space chasms in manipulation planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[112]  Nicholas Roy,et al.  Rapidly-exploring Random Belief Trees for motion planning under uncertainty , 2011, 2011 IEEE International Conference on Robotics and Automation.