Latex and natural rubber: processing techniques for biomedical applications

[1]  Md. Enamul Hoque,et al.  Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters , 2022, Polymers.

[2]  Karina Luzia Andrade,et al.  Wettability tuning of natural rubber/polyvinylpyrrolidone electrospun nonwoven mats , 2022, Surfaces and Interfaces.

[3]  Janarthanan Supramaniam,et al.  Nano-engineered ZnO/CNF-based Epoxidized Natural Rubber with Enhanced Strength for Novel Self-healing Glove Fabrication , 2022, Chemical Engineering Journal.

[4]  Karina Luzia Andrade,et al.  Latex and natural rubber: recent advances for biomedical applications , 2022, Polímeros.

[5]  S. Wen,et al.  High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide , 2021, International Journal of Biological Macromolecules.

[6]  L. Schaeffer,et al.  Mechanical properties, in vitro and in vivo biocompatibility analysis of pure iron porous implant produced by metal injection molding: A new eco-friendly feedstock from natural rubber (Hevea brasiliensis). , 2021, Materials science & engineering. C, Materials for biological applications.

[7]  R. Herculano,et al.  3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application , 2021, Journal of Applied Polymer Science.

[8]  Elizabeth Obino Cirne-Lima,et al.  Electrospun natural rubber latex biocomposite for scaffolds in tissue engineering , 2021, Journal of Bioactive and Compatible Polymers.

[9]  A. Fusco-Almeida,et al.  Natural rubber dressing loaded with silver sulfadiazine for the treatment of burn wounds infected with Candida spp. , 2021, International journal of biological macromolecules.

[10]  R. Herculano,et al.  Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. , 2021, Materials science & engineering. C, Materials for biological applications.

[11]  D. Correa,et al.  Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application , 2021 .

[12]  E. Cirne-Lima,et al.  Dense and Fibrous Membranes of Poly(lactic-co-glycolic acid)/Epoxidized Poly(isoprene): Chemical and Biological Evaluation , 2021, Fibers and Polymers.

[13]  R. Choudhary,et al.  A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds , 2021, Polymers.

[14]  S. Houshyar,et al.  Nanodiamond-Based Fibrous Composites: A Review of Fabrication Methods, Properties, and Applications , 2021 .

[15]  Xiaoyu Gong,et al.  Release of Cellulose Nanocrystal Particles from Natural Rubber Latex Composites into Immersed Aqueous Media. , 2021, ACS applied bio materials.

[16]  J. Silva,et al.  SUSTENTABILIDADE ECONÔMICA E AMBIENTAL NA AGRICULTURA FAMILIAR: UM ESTUDO DE CASO SOBRE A RENTABILIDADE DO CULTIVO DA SERINGA EM DENISE-MT/ ECONOMIC AND ENVIRONMENTAL SUSTAINABILITY IN FAMILY AGRICULTURE: A CASE STUDY ON THE PROFITABILITY OF SYRINGE CULTIVATION IN DENISE-MT , 2021 .

[17]  G. Garlet,et al.  Concentration-dependent effects of latex F1-protein fraction incorporated into deproteinized bovine bone and biphasic calcium phosphate on the repair of critical-size bone defects. , 2020, Journal of biomedical materials research. Part B, Applied biomaterials.

[18]  G. Caetano,et al.  Healing effects of natural latex serum 1% from Hevea brasiliensis in an experimental skin abrasion wound model☆☆☆ , 2020, Anais brasileiros de dermatologia.

[19]  S. Lai,et al.  Preparation of Self-healing Natural Rubber/Polycaprolactone (NR/PCL) Blends , 2020 .

[20]  S. Bahrami,et al.  An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing , 2020 .

[21]  C. Mendonça,et al.  Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes , 2020 .

[22]  N. Tangboriboon,et al.  Mangosteen peel and seed as antimicrobial and drug delivery in rubber products , 2020 .

[23]  Emmanuel Rotimi Sadiku,et al.  Electrospun Alginate Nanofibers Toward Various Applications: A Review , 2020, Materials.

[24]  M. A. Taemeh,et al.  Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. , 2020, Carbohydrate polymers.

[25]  Ji-Huan He,et al.  Fabrication of latex-based nanofibers by electrospinning. , 2020, Recent patents on nanotechnology.

[26]  A. Job,et al.  IN VITRO ASSESSMENT OF CYTOTOXICITY AND OXIDATIVE STRESS PARAMETERS OF NATURAL RUBBER LATEX MEMBRANES STABILIZED WITH DIFFERENT CONCENTRATIONS OF AMMONIA IN CHO-K1 CELLS , 2019 .

[27]  Xungai Wang,et al.  Fabrication and properties of elastic fibers from electrospinning natural rubber , 2019, Journal of Applied Polymer Science.

[28]  R. Herculano,et al.  Development and Characterization of Natural Rubber Latex and Polylactic Acid Membranes for Biomedical Application , 2019, Journal of Polymers and the Environment.

[29]  Sambhu Bhadra,et al.  Possibility of artocarpus heterophyllus latex as an alternative source for natural rubber , 2019, Polymer Testing.

[30]  J. A. Malmonge,et al.  Mechanical, thermal, and morphological properties of natural rubber/45S5 Bioglass® fibrous mat with ribbon-like morphology produced by solution blow spinning , 2019, European Polymer Journal.

[31]  P. Boochathum,et al.  Biocompatibility and biodegradability of filler encapsulated chloroacetated natural rubber/polyvinyl alcohol nanofiber for wound dressing. , 2019, Materials science & engineering. C, Materials for biological applications.

[32]  Huichang Gao,et al.  Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. , 2019, Carbohydrate polymers.

[33]  Bruna Leonel Carlos,et al.  Effects of latex membrane on guided regeneration of long bones , 2019, Journal of biomaterials science. Polymer edition.

[34]  M. Okamoto,et al.  Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells , 2019, Materials Today Chemistry.

[35]  R. Herculano,et al.  Novel polymeric dressing to the treatment of infected chronic wound , 2019, Applied Microbiology and Biotechnology.

[36]  M. Popa,et al.  Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. , 2019, Materials science & engineering. C, Materials for biological applications.

[37]  J. Planell,et al.  Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. , 2019, Colloids and surfaces. B, Biointerfaces.

[38]  A. C. Guastaldi,et al.  Natural rubber latex membranes incorporated with three different types of propolis: Physical-chemistry and antimicrobial behaviours. , 2019, Materials science & engineering. C, Materials for biological applications.

[39]  T. Uthup,et al.  Distinguishing CPT gene family members and vetting the sequence structure of a putative rubber synthesizing variant in Hevea brasiliensis. , 2019, Gene.

[40]  G. V. S. Luz,et al.  Evidence in Practice of Tissue Healing with Latex Biomembrane: Integrative Review , 2019, Journal of diabetes research.

[41]  Arnaud Nourry,et al.  Antibacterial activity of natural rubber based coatings containing a new guanidinium-monomer as active agent , 2019, Progress in Organic Coatings.

[42]  Ricaurte Leidy,et al.  Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations , 2019, Trends in Food Science & Technology.

[43]  I. Watanabe,et al.  Application of a Purified Protein From Natural Latex and the Influence of Suture Type on Achilles Tendon Repair in Rats , 2019, The American journal of sports medicine.

[44]  T. Suteewong,et al.  PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. , 2019, Colloids and surfaces. B, Biointerfaces.

[45]  I. Watanabe,et al.  Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury , 2019, PloS one.

[46]  S. Larpkiattaworn,et al.  Electrospinning of natural rubber latex-blended polyvinyl alcohol , 2019, Materials Today: Proceedings.

[47]  Yingyun Qiao,et al.  Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering , 2018, Process Biochemistry.

[48]  S. Ramakrishna,et al.  Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. , 2018, Materials science & engineering. C, Materials for biological applications.

[49]  C. B. Lombello,et al.  Higher cellular interaction and faster production of natural rubber latex LbL films by spraying method , 2018, The International Journal of Advanced Manufacturing Technology.

[50]  P. Boochathum,et al.  Nanofiber films of chloroacetated natural rubber/poly(vinyl alcohol) by electrospinning technique: Silica effects on biodegradation , 2018 .

[51]  N. A. Henckes,et al.  Chemical and in vitro characterization of epoxidized natural rubber blends for biomedical applications , 2018, Journal of Polymer Research.

[52]  WangWeiguang,et al.  3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration , 2018 .

[53]  M. Zimmermann,et al.  Membrana de látex natural de Hevea brasiliensis auxilia no processo de reparação tecidual em bovinos , 2018, Arquivo Brasileiro de Medicina Veterinária e Zootecnia.

[54]  R. Herculano,et al.  Natural rubber latex biodevice as controlled release system for chronic wounds healing , 2018 .

[55]  A. Fusco-Almeida,et al.  Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. , 2018, Future microbiology.

[56]  S. Haider,et al.  A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology , 2015, Arabian Journal of Chemistry.

[57]  S. Martínez,et al.  DEVELOPMENT OF POLY (LACTIC - CO - GLYCOLIC ACID)/ BIOGLASS FIBERS USING AN ELECTROSPINNING TECHNIQUE , 2018 .

[58]  R. Herculano,et al.  Evaluation of peptides release using a natural rubber latex biomembrane as a carrier , 2018, Amino Acids.

[59]  A. C. Guastaldi,et al.  Physical, chemical and antimicrobial implications of the association of propolis with a natural rubber latex membrane , 2017 .

[60]  F. Prezotti,et al.  Porosity effects of natural latex (Hevea brasiliensis) on release of compounds for biomedical applications , 2017, Journal of biomaterials science. Polymer edition.

[61]  M. Okamoto,et al.  Cytotoxicity and anticancer activity of natural rubber latex particles for cancer cells , 2017 .

[62]  R. Rujiravanit,et al.  Sericin-binded-deprotenized natural rubber film containing chitin whiskers as elasto-gel dressing. , 2017, International journal of biological macromolecules.

[63]  Kazuya Yamamoto,et al.  Preparation of Self-Assembled Chitin Nanofiber-Natural Rubber Composite Sheets and Porous Materials , 2017, Biomolecules.

[64]  R. Herculano,et al.  Natural rubber latex: Development and in vitro characterization of a future transdermal patch for enuresis treatment , 2017 .

[65]  R. Herculano,et al.  Characterization and Microbiological Application of Ciprofloxacin Loaded in Natural Rubber Latex Membranes , 2017 .

[66]  W. Wattanakaroon,et al.  Albumin-natural rubber latex composite as a dermal wound dressing , 2017 .

[67]  M. Okamoto,et al.  Evaluation on Cytotoxicity of Natural Rubber Latex Nanoparticles and Application in Bone Tissue Engineering , 2017 .

[68]  S. Riyajan,et al.  A novel pH and temperature-sensitive maleate poly(vinyl alcohol)-graft-isopropylacrylamide/natural rubber blend: preparation and properties , 2017, Polymer Bulletin.

[69]  Adam M. Behrens,et al.  A Review of the Fundamental Principles and Applications of Solution Blow Spinning. , 2016, ACS applied materials & interfaces.

[70]  R. Guedes,et al.  Antimicrobial Approaches for Textiles: From Research to Market , 2016, Materials.

[71]  V. M. Silva,et al.  Development of Biobased Poly(Lactic Acid)/Epoxidized Natural Rubber Blends Processed by Electrospinning: Morphological, Structural and Thermal Properties , 2016 .

[72]  T. Phaechamud,et al.  Gentamicin sulfate-loaded porous natural rubber films for wound dressing. , 2016, International journal of biological macromolecules.

[73]  R. Herculano,et al.  Oxytocin Sustained Release Using Natural Rubber Latex Membranes , 2016, International Journal of Peptide Research and Therapeutics.

[74]  J. A. Malmonge,et al.  Study of thermal and mechanical properties of a biocomposite based on natural rubber and 45S5 Bioglass® particles , 2016, Journal of Thermal Analysis and Calorimetry.

[75]  I. Cacciotti,et al.  Neat and GNPs loaded natural rubber fibers by electrospinning: Manufacturing and characterization , 2015 .

[76]  R. Herculano,et al.  Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier , 2015 .

[77]  M. Iyomasa,et al.  Properties of the tibialis anterior muscle after treatment with laser therapy and natural latex protein following sciatic nerve crush , 2015, Muscle & nerve.

[78]  Warit Jawjit,et al.  Evaluating environmental performance of concentrated latex production in Thailand , 2015 .

[79]  W. Gong,et al.  In situ synthesis of natural rubber latex-supported gold nanoparticles for flexible SERS substrates , 2015 .

[80]  J. Issa,et al.  A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects. , 2015, Acta histochemica.

[81]  J. P. Issa,et al.  Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats , 2015, Journal of the Neurological Sciences.

[82]  F. Bonfils,et al.  Micro‐organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties , 2014, Journal of applied microbiology.

[83]  M. Iyomasa,et al.  Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel , 2014, Growth factors.

[84]  A. Valizadeh,et al.  Electrospinning and electrospun nanofibres. , 2014, IET nanobiotechnology.

[85]  Carlos Frederico de Oliveira Graeff,et al.  Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits , 2014, Journal of Materials Science: Materials in Medicine.

[86]  N. C. Souza,et al.  Membranes from latex with propolis for biomedical applications , 2014 .

[87]  I. H. Bechtold,et al.  Characterization of natural rubber membranes using scaling laws analysis , 2014 .

[88]  Carlos Frederico de Oliveira Graeff,et al.  Biocompatibility studies of natural rubber latex from different tree clones and collection methods , 2014, Journal of Materials Science: Materials in Medicine.

[89]  Luiz H. C. Mattoso,et al.  Electrospinning of PCL/natural rubber blends , 2013, Journal of Materials Science.

[90]  M. Iyomasa,et al.  Application of a Low-Level Laser Therapy and the Purified Protein from Natural Latex (Hevea brasiliensis) in the Controlled Crush Injury of the Sciatic Nerve of Rats: A Morphological, Quantitative, and Ultrastructural Study , 2013, BioMed research international.

[91]  D. Galvão,et al.  Bending of Layer-by-Layer Films Driven by an External Magnetic Field , 2013, International journal of molecular sciences.

[92]  Qizhi Chen,et al.  Elastomeric biomaterials for tissue engineering , 2013 .

[93]  M. Rodríguez-Pérez,et al.  Green synthesis of gold nanoparticles with self-sustained natural rubber membranes , 2013 .

[94]  Sabu Thomas,et al.  X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose , 2012 .

[95]  P. Boonme,et al.  Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends , 2012 .

[96]  W. Sebald,et al.  Influence of low‐level laser associated with osteogenic proteins recombinant human BMP‐2 and Hevea brasiliensis on bone repair in Wistar rats , 2012, Microscopy research and technique.

[97]  P. Mohanan,et al.  Effect of latex material on antioxidant enzymes, lipid peroxidation, DNA damage, and chromosomal aberration , 2012 .

[98]  M. Frade,et al.  The vegetal biomembrane in the healing of chronic venous ulcers. , 2012, Anais brasileiros de dermatologia.

[99]  J. Sakdapipanich,et al.  Characterization of associated proteins and phospholipids in natural rubber latex. , 2011, Journal of bioscience and bioengineering.

[100]  P. Gonçalves,et al.  Agronomical performance and profitability of exploitation systems in four rubber tree clones in São Paulo state , 2010 .

[101]  Carlos Frederico de Oliveira Graeff,et al.  Latex use as an occlusive membrane for guided bone regeneration. , 2010, Journal of biomedical materials research. Part A.

[102]  J. Lachat,et al.  Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis , 2010, Phytotherapy research : PTR.

[103]  F. C. Bragança,et al.  Borracha natural e nanocompósitos com argila , 2009 .

[104]  J. Rolland,et al.  Latex allergy: a model for therapy , 2008, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[105]  D. L. Agostini,et al.  Thermal degradation of both latex and latex cast films forming membranes , 2008 .

[106]  J. Coutinho‐Netto,et al.  Biocompatibility of natural latex implanted into dental alveolus of rats. , 2006, Journal of oral science.

[107]  J. Lachat,et al.  Evaluation of the biocompatibility of a new biomembrane , 2004 .

[108]  Jorge Barrios Allarcon,et al.  Alergia ao látex , 2003 .

[109]  M. Norenberg,et al.  Ammonia‐induced production of free radicals in primary cultures of rat astrocytes , 2001, Journal of neuroscience research.