A software framework for process flow execution of stochastic multi-scale integrated models

Abstract Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a self-contained numerical module representing an individual spatio-temporal process. Depending on the application case of a component model – such as standalone execution or in an integrated model – the source of the external input needs to be specified. The required external inputs can thereby be obtained by a file operation in case of a standalone execution. Alternatively, required inputs can be obtained from other component models, in case the component model is part of an integrated model. Using different notations to specify these input requirements, however, requires a modification of the state transition function per application case and therefore would reduce the generic applicability of a component model. To address this problem, we propose the function object notation as a means to specify the input requirements of a component model. This function object notation provides modellers with a uniform syntax to express the input requirements within the state transition function. During component initialisation, the function objects can be parameterised with different external sources. In addition to a uniform syntax, the function object notation allows a modeller to specify a request-reply execution flow of the coupled models (i.e. a component requests data needed for its own progress from another component). We extend the request-reply execution approach to Monte Carlo simulations and implement a software framework prototype. Using this prototype, we build an exemplary integrated model by coupling components for land use change, hydrology and Eucalyptus tree growth at different temporal discretisations to obtain the probability for bioenergy plant growing in a hypothetical catchment. The presented approach allows modellers to specify input requirements in the state transition function independently from the source of external inputs and therefore increases the reusability of these component models.

[1]  Derek Karssenberg,et al.  Map algebra and model algebra for integrated model building , 2013, Environ. Model. Softw..

[2]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[3]  Thomas Berger,et al.  A software coupling approach to assess low-cost soil conservation strategies for highland agriculture in Vietnam , 2013, Environ. Model. Softw..

[4]  Daniel C. Dunn,et al.  Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++ , 2010, Environ. Model. Softw..

[5]  Markus Metz,et al.  GRASS GIS: A multi-purpose open source GIS , 2012, Environ. Model. Softw..

[6]  Thomas Heckelei,et al.  A methodology for enhanced flexibility of integrated assessment in agriculture , 2009 .

[7]  Jean-Luc de Kok,et al.  Elbe DSS: a planning support system for strategic river basin planning , 2009 .

[8]  Jeremy L. Mennis Multidimensional Map Algebra: Design and Implementation of a Spatio-Temporal GIS Processing Language , 2010, Trans. GIS.

[9]  Roger Moore,et al.  An overview of the open modelling interface and environment (the OpenMI) , 2005 .

[10]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[11]  Jin Teng,et al.  An integrated modelling framework for regulated river systems , 2013, Environ. Model. Softw..

[12]  ElSawahSondoss,et al.  Integrated assessment and modelling , 2015 .

[13]  J. B. Gregersen,et al.  OpenMI: Open modelling interface , 2007 .

[14]  Chaopeng Shen,et al.  Quantifying the effects of data integration algorithms on the outcomes of a subsurface-land surface processes model , 2014, Environ. Model. Softw..

[15]  Wolfgang Schwanghart,et al.  TopoToolbox: A set of Matlab functions for topographic analysis , 2010, Environ. Model. Softw..

[16]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[17]  Jochen Hinkel,et al.  The PIAM approach to modular integrated assessment modelling , 2009, Environ. Model. Softw..

[18]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[19]  J. Schoorl,et al.  Modelling interactions and feedback mechanisms between land use change and landscape processes , 2009 .

[20]  Elizabeth Sklar,et al.  NetLogo, a Multi-agent Simulation Environment , 2007, Artificial Life.

[21]  T. Bernhardsen Geographic Information Systems: An Introduction , 1999 .

[22]  Holger Schüttrumpf,et al.  An OpenMI module for the groundwater flow simulation programme Feflow , 2010 .

[23]  Jan Rotmans,et al.  Image: An Integrated Model to Assess the Greenhouse Effect , 1990 .

[24]  Anthony J. Jakeman,et al.  Selecting among five common modelling approaches for integrated environmental assessment and management , 2013, Environ. Model. Softw..

[25]  J. M. Peterson,et al.  Accessible integration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI): methodology and initial results , 2009 .

[26]  André Faaij,et al.  Spatio-temporal uncertainty in Spatial Decision Support Systems: A case study of changing land availability for bioenergy crops in Mozambique , 2012, Comput. Environ. Urban Syst..

[27]  Robert Costanza,et al.  Design of multi-paradigm integrating modelling tools for ecological research , 2000, Environ. Model. Softw..

[28]  Andrew U. Frank,et al.  Map Algebra Extended with Functors for Temporal Data , 2005, ER.

[29]  Robert M. Argent,et al.  A case study of environmental modelling and simulation using transplantable components , 2005, Environ. Model. Softw..

[30]  Erwan Bocher,et al.  An overview on current free and open source desktop GIS developments , 2009, Int. J. Geogr. Inf. Sci..

[31]  Anthony M. Castronova,et al.  Feedback loops and temporal misalignment in component‐based hydrologic modeling , 2011 .

[32]  Derek Karssenberg,et al.  Modelling landscape dynamics with Python , 2007, Int. J. Geogr. Inf. Sci..

[33]  Gerard B. M. Heuvelink,et al.  Error Propagation in Environmental Modelling with GIS , 1998 .

[34]  Silvio Funtowicz,et al.  Application of a checklist for quality assistance in environmental modelling to an energy model , 2005 .

[35]  L. Shawn Matott,et al.  Evaluating uncertainty in integrated environmental models: A review of concepts and tools , 2009 .

[36]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[37]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[38]  Derek Karssenberg,et al.  The value of environmental modelling languages for building distributed hydrological models , 2002 .

[39]  Derek Karssenberg,et al.  Dynamic environmental modelling in GIS: 2. Modelling error propagation , 2005, Int. J. Geogr. Inf. Sci..

[40]  Dean P. Holzworth,et al.  Simplifying environmental model reuse , 2010, Environ. Model. Softw..

[41]  Grady Booch,et al.  Object-Oriented Analysis and Design with Applications , 1990 .

[42]  Olaf David,et al.  A software engineering perspective on environmental modeling framework design: The Object Modeling System , 2013, Environ. Model. Softw..

[43]  Anthony J. Jakeman,et al.  Construction and Evaluation of Models of Environmental Systems , 1993 .

[44]  Clemens Szyperski,et al.  Component software , 1997 .

[45]  D. L. Scarnecchia,et al.  Fundamentals of Ecological Modelling , 1995 .

[46]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[47]  M. Bierkens,et al.  Global monthly water stress: 1. Water balance and water availability , 2011 .

[48]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[49]  David Pullar,et al.  SimuMap: a computational system for spatial modelling , 2004, Environ. Model. Softw..

[50]  K. Lindenschmidt,et al.  Structural uncertainty in a river water quality modelling system , 2007 .

[51]  Christian Schweitzer,et al.  A generic framework for land-use modelling , 2011, Environ. Model. Softw..

[52]  J. M. Peterson,et al.  The Simple Script Wrapper for OpenMI: Enabling interdisciplinary modeling studies , 2013, Environ. Model. Softw..

[53]  Edzer J. Pebesma,et al.  Please Scroll down for Article International Journal of Geographical Information Science Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different Scenarios: an Air Quality Example Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different S , 2022 .

[54]  Andrea Emilio Rizzoli,et al.  Semantic links in integrated modelling frameworks , 2008, Math. Comput. Simul..

[55]  Petraq Papajorgji A plug and play approach for developing environmental models , 2005, Environ. Model. Softw..

[56]  Dario Del Giudice,et al.  Model bias and complexity - Understanding the effects of structural deficits and input errors on runoff predictions , 2015, Environ. Model. Softw..

[57]  Jeroen P. van der Sluijs,et al.  A framework for dealing with uncertainty due to model structure error , 2004 .

[58]  Peter Salamon,et al.  A software framework for construction of process-based stochastic spatio-temporal models and data assimilation , 2010, Environ. Model. Softw..

[59]  Peter A. Vanrolleghem,et al.  Uncertainty in the environmental modelling process - A framework and guidance , 2007, Environ. Model. Softw..

[60]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[61]  Jean-Luc de Kok,et al.  Reusability of model components for environmental simulation - Case studies for integrated coastal zone management , 2015, Environ. Model. Softw..

[62]  Scott D. Peckham,et al.  A component-based approach to integrated modeling in the geosciences: The design of CSDMS , 2013, Comput. Geosci..

[63]  Peter H. Verburg,et al.  Simulating feedbacks in land use and land cover change models , 2006, Landscape Ecology.

[64]  Joseph H. A. Guillaume,et al.  Integrated assessment and modelling: Overview and synthesis of salient dimensions , 2015, Environ. Model. Softw..

[65]  Cecelia DeLuca,et al.  The architecture of the Earth System Modeling Framework , 2003, Computing in Science & Engineering.

[66]  M. Donatelli,et al.  Integrated assessment of agricultural systems: a component - based framework for the European Union (Seamless) , 2008 .

[67]  David J. Muth,et al.  An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems , 2013, Environ. Model. Softw..

[68]  Yan Xu,et al.  Towards better environmental software for spatio-temporal ecological models: Lessons from developing an intelligent system supporting phytoplankton prediction in lakes , 2015, Ecol. Informatics.